NAME¶
gg-queue, 
GG_SLIST_HEAD, 
GG_SLIST_HEAD_INITIALIZER,
  
GG_SLIST_ENTRY, 
GG_SLIST_INIT2, 
GG_SLIST_INSERT_AFTER,
  
GG_SLIST_INSERT_HEAD, 
GG_SLIST_REMOVE_HEAD,
  
GG_SLIST_REMOVE, 
GG_SLIST_FOREACH, 
GG_SLIST_EMPTY,
  
GG_SLIST_FIRST, 
GG_SLIST_NEXT, 
GG_SIMPLEQ_HEAD,
  
GG_SIMPLEQ_HEAD_INITIALIZER, 
GG_SIMPLEQ_ENTRY,
  
GG_SIMPLEQ_INIT, 
GG_SIMPLEQ_INSERT_HEAD,
  
GG_SIMPLEQ_INSERT_TAIL, 
GG_SIMPLEQ_INSERT_AFTER,
  
GG_SIMPLEQ_REMOVE_HEAD, 
GG_SIMPLEQ_REMOVE,
  
GG_SIMPLEQ_FOREACH, 
GG_SIMPLEQ_EMPTY, 
GG_SIMPLEQ_FIRST,
  
GG_SIMPLEQ_NEXT, 
GG_LIST_HEAD, 
GG_LIST_HEAD_INITIALIZER,
  
GG_LIST_ENTRY, 
GG_LIST_INIT, 
GG_LIST_INSERT_AFTER,
  
GG_LIST_INSERT_BEFORE, 
GG_LIST_INSERT_HEAD,
  
GG_LIST_REMOVE, 
GG_LIST_FOREACH, 
GG_LIST_EMPTY,
  
GG_LIST_FIRST, 
GG_LIST_NEXT, 
GG_TAILQ_HEAD,
  
GG_TAILQ_HEAD_INITIALIZER, 
GG_TAILQ_ENTRY, 
GG_TAILQ_INIT,
  
GG_TAILQ_INSERT_HEAD, 
GG_TAILQ_INSERT_TAIL,
  
GG_TAILQ_INSERT_AFTER, 
GG_TAILQ_INSERT_BEFORE,
  
GG_TAILQ_REMOVE, 
GG_TAILQ_FOREACH,
  
GG_TAILQ_FOREACH_REVERSE, 
GG_TAILQ_EMPTY, 
GG_TAILQ_FIRST,
  
GG_TAILQ_NEXT, 
GG_TAILQ_LAST, 
GG_TAILQ_PREV,
  
GG_CIRCLEQ_HEAD, 
GG_CIRCLEQ_HEAD_INITIALIZER,
  
GG_CIRCLEQ_ENTRY, 
GG_CIRCLEQ_INIT,
  
GG_CIRCLEQ_INSERT_AFTER, 
GG_CIRCLEQ_INSERT_BEFORE,
  
GG_CIRCLEQ_INSERT_HEAD, 
GG_CIRCLEQ_INSERT_TAIL,
  
GG_CIRCLEQ_REMOVE, 
GG_CIRCLEQ_FOREACH,
  
GG_CIRCLEQ_FOREACH_REVERSE, 
GG_CIRCLEQ_EMPTY,
  
GG_CIRCLEQ_FIRST, 
GG_CIRCLEQ_LAST, 
GG_CIRCLEQ_NEXT,
  
GG_CIRCLEQ_PREV - implementations of singly-linked lists, simple
  queues, lists, tail queues, and circular queues
SYNOPSIS¶
#include <ggi/gg-queue.h>
GG_SLIST_HEAD(HEADNAME, TYPE);
GG_SLIST_HEAD_INITIALIZER(head);
GG_SLIST_ENTRY(TYPE);
GG_SLIST_INIT(GG_SLIST_HEAD *head);
GG_SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, GG_SLIST_ENTRY NAME);
GG_SLIST_INSERT_HEAD(GG_SLIST_HEAD *head, TYPE *elm, GG_SLIST_ENTRY NAME);
GG_SLIST_REMOVE_HEAD(GG_SLIST_HEAD *head, GG_SLIST_ENTRY NAME);
GG_SLIST_REMOVE(GG_SLIST_HEAD *head, TYPE *elm, TYPE, GG_SLIST_ENTRY NAME);
GG_SLIST_FOREACH(TYPE *var, GG_SLIST_HEAD *head, GG_SLIST_ENTRY NAME);
int
GG_SLIST_EMPTY(GG_SLIST_HEAD *head);
TYPE *
GG_SLIST_FIRST(GG_SLIST_HEAD *head);
TYPE *
GG_SLIST_NEXT(TYPE *elm, GG_SLIST_ENTRY NAME);
GG_SIMPLEQ_HEAD(HEADNAME, TYPE);
GG_SIMPLEQ_HEAD_INITIALIZER(head);
GG_SIMPLEQ_ENTRY(TYPE);
GG_SIMPLEQ_INIT(GG_SIMPLEQ_HEAD *head);
GG_SIMPLEQ_INSERT_HEAD(GG_SIMPLEQ_HEAD *head, TYPE *elm, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_INSERT_TAIL(GG_SIMPLEQ_HEAD *head, TYPE *elm, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_INSERT_AFTER(GG_SIMPLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
           GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_REMOVE_HEAD(GG_SIMPLEQ_HEAD *head, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_REMOVE(GG_SIMPLEQ_HEAD *head, TYPE *elm, TYPE, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_FOREACH(TYPE *var, GG_SIMPLEQ_HEAD *head, GG_SIMPLEQ_ENTRY NAME);
int
GG_SIMPLEQ_EMPTY(GG_SIMPLEQ_HEAD *head);
TYPE *
GG_SIMPLEQ_FIRST(GG_SIMPLEQ_HEAD *head);
TYPE *
GG_SIMPLEQ_NEXT(TYPE *elm, GG_SIMPLEQ_ENTRY NAME);
GG_LIST_HEAD(HEADNAME, TYPE);
GG_LIST_HEAD_INITIALIZER(head);
GG_LIST_ENTRY(TYPE);
GG_LIST_INIT(GG_LIST_HEAD *head);
GG_LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_INSERT_BEFORE(TYPE *listelm, TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_INSERT_HEAD(GG_LIST_HEAD *head, TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_REMOVE(TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_FOREACH(TYPE *var, GG_LIST_HEAD *head, GG_LIST_ENTRY NAME);
int
GG_LIST_EMPTY(GG_LIST_HEAD *head);
TYPE *
GG_LIST_FIRST(GG_LIST_HEAD *head);
TYPE *
GG_LIST_NEXT(TYPE *elm, GG_LIST_ENTRY NAME);
GG_TAILQ_HEAD(HEADNAME, TYPE);
GG_TAILQ_HEAD_INITIALIZER(head);
GG_TAILQ_ENTRY(TYPE);
GG_TAILQ_INIT(GG_TAILQ_HEAD *head);
GG_TAILQ_INSERT_HEAD(GG_TAILQ_HEAD *head, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_INSERT_TAIL(GG_TAILQ_HEAD *head, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_INSERT_AFTER(GG_TAILQ_HEAD *head, TYPE *listelm, TYPE *elm,
           GG_TAILQ_ENTRY NAME);
GG_TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_REMOVE(GG_TAILQ_HEAD *head, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_FOREACH(TYPE *var, GG_TAILQ_HEAD *head, GG_TAILQ_ENTRY NAME);
GG_TAILQ_FOREACH_REVERSE(TYPE *var, GG_TAILQ_HEAD *head, HEADNAME,
           GG_TAILQ_ENTRY NAME);
int
GG_TAILQ_EMPTY(GG_TAILQ_HEAD *head);
TYPE *
GG_TAILQ_FIRST(GG_TAILQ_HEAD *head);
TYPE *
GG_TAILQ_NEXT(TYPE *elm, GG_TAILQ_ENTRY NAME);
TYPE *
GG_TAILQ_LAST(GG_TAILQ_HEAD *head, HEADNAME);
TYPE *
GG_TAILQ_PREV(TYPE *elm, HEADNAME, GG_TAILQ_ENTRY NAME);
GG_CIRCLEQ_HEAD(HEADNAME, TYPE);
GG_CIRCLEQ_HEAD_INITIALIZER(head);
GG_CIRCLEQ_ENTRY(TYPE);
GG_CIRCLEQ_INIT(GG_CIRCLEQ_HEAD *head);
GG_CIRCLEQ_INSERT_AFTER(GG_CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
           GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_INSERT_BEFORE(GG_CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
           GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_INSERT_HEAD(GG_CIRCLEQ_HEAD *head, TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_INSERT_TAIL(GG_CIRCLEQ_HEAD *head, TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_REMOVE(GG_CIRCLEQ_HEAD *head, TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_FOREACH(TYPE *var, GG_CIRCLEQ_HEAD *head, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_FOREACH_REVERSE(TYPE *var, GG_CIRCLEQ_HEAD *head,
           GG_CIRCLEQ_ENTRY NAME);
int
GG_CIRCLEQ_EMPTY(GG_CIRCLEQ_HEAD *head);
TYPE *
GG_CIRCLEQ_FIRST(GG_CIRCLEQ_HEAD *head);
TYPE *
GG_CIRCLEQ_LAST(GG_CIRCLEQ_HEAD *head);
TYPE *
GG_CIRCLEQ_NEXT(TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
TYPE *
GG_CIRCLEQ_PREV(TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
 
DESCRIPTION¶
These macros define and operate on five types of data structures: singly- linked
  lists, simple queues, lists, tail queues, and circular queues. All five
  structures support the following functionality:
  - 1
 
  - Insertion of a new entry at the head of the list.
 
  - 2
 
  - Insertion of a new entry before or after any element in the
      list.
 
  - 3
 
  - Removal of any entry in the list.
 
  - 4
 
  - Forward traversal through the list.
 
Singly-linked lists are the simplest of the five data structures and support
  only the above functionality. Singly-linked lists are ideal for applications
  with large datasets and few or no removals, or for implementing a LIFO queue.
 
Simple queues add the following functionality:
  - 1
 
  - Entries can be added at the end of a list.
 
However:
  - 1
 
  - Entries may not be added before any element in the
    list.
 
  - 2
 
  - All list insertions and removals must specify the head of
      the list.
 
  - 3
 
  - Each head entry requires two pointers rather than one.
 
Simple queues are ideal for applications with large datasets and few or no
  removals, or for implementing a FIFO queue.
 
All doubly linked types of data structures (lists, tail queues, and circle
  queues) additionally allow:
  - 1
 
  - Insertion of a new entry before any element in the
    list.
 
  - 2
 
  - O(1) removal of any entry in the list.
 
However:
  - 1
 
  - Each element requires two pointers rather than one.
 
  - 2
 
  - Code size and execution time of operations (except for
      removal) is about twice that of the singly-linked data-structures.
 
Linked lists are the simplest of the doubly linked data structures and support
  only the above functionality over singly-linked lists.
 
Tail queues add the following functionality:
  - 1
 
  - Entries can be added at the end of a list.
 
However:
  - 1
 
  - All list insertions and removals, except insertion before
      another element, must specify the head of the list.
 
  - 2
 
  - Each head entry requires two pointers rather than one.
 
  - 3
 
  - Code size is about 15% greater and operations run about 20%
      slower than lists.
 
Circular queues add the following functionality:
  - 1
 
  - Entries can be added at the end of a list.
 
  - 2
 
  - They may be traversed backwards, from tail to head.
 
However:
  - 1
 
  - All list insertions and removals must specify the head of
      the list.
 
  - 2
 
  - Each head entry requires two pointers rather than one.
 
  - 3
 
  - The termination condition for traversal is more
    complex.
 
  - 4
 
  - Code size is about 40% greater and operations run about 45%
      slower than lists.
 
In the macro definitions, 
TYPE is the name of a user defined structure,
  that must contain a field of type 
GG_LIST_ENTRY,
  
GG_SIMPLEQ_ENTRY, 
GG_SLIST_ENTRY, 
GG_TAILQ_ENTRY, or
  
GG_CIRCLEQ_ENTRY, named 
NAME. The argument 
HEADNAME is
  the name of a user defined structure that must be declared using the macros
  
GG_LIST_HEAD, 
GG_SIMPLEQ_HEAD, 
GG_SLIST_HEAD,
  
GG_TAILQ_HEAD, or 
GG_CIRCLEQ_HEAD. See the examples below for
  further explanation of how these macros are used.
SINGLY-LINKED LISTS¶
A singly-linked list is headed by a structure defined by the SLIST_HEAD macro.
  This structure contains a single pointer to the first element on the list. The
  elements are singly linked for minimum space and pointer manipulation overhead
  at the expense of O(n) removal for arbitrary elements. New elements can be
  added to the list after an existing element or at the head of the list. An
  
GG_SLIST_HEAD structure is declared as follows:
 
GG_SLIST_HEAD(HEADNAME, TYPE) head;
 
where 
HEADNAME is the name of the structure to be defined, and
  
TYPE is the type of the elements to be linked into the list. A pointer
  to the head of the list can later be declared as:
 
struct HEADNAME *headp;
 
(The names head and headp are user selectable.)
 
The macro 
GG_SLIST_HEAD_INITIALIZER evaluates to an initializer for the
  list head.
 
The macro 
GG_SLIST_EMPTY evaluates to true if there are no elements in
  the list.
 
The macro 
GG_SLIST_ENTRY declares a structure that connects the elements
  in the list.
 
The macro 
GG_SLIST_FIRST returns the first element in the list or NULL if
  the list is empty.
 
The macro 
GG_SLIST_FOREACH traverses the list referenced by head in the
  forward direction, assigning each element in turn to var.
 
The macro 
GG_SLIST_INIT initializes the list referenced by head.
 
The macro 
GG_SLIST_INSERT_HEAD inserts the new element elm at the head of
  the list.
 
The macro 
GG_SLIST_INSERT_AFTER inserts the new element elm after the
  element listelm.
 
The macro 
GG_SLIST_NEXT returns the next element in the list.
 
The macro 
GG_SLIST_REMOVE removes the element elm from the list.
 
The macro 
GG_SLIST_REMOVE_HEAD removes the first element from the head of
  the list. For optimum efficiency, elements being removed from the head of the
  list should explicitly use this macro instead of the generic
  
GG_SLIST_REMOVE macro.
SINGLY-LINKED LIST EXAMPLE¶
GG_SLIST_HEAD(slisthead, entry) head =
    GG_SLIST_HEAD_INITIALIZER(head);
struct slisthead *headp;                /* Singly-linked List head. */
struct entry {
        ...
        GG_SLIST_ENTRY(entry) entries;  /* Singly-linked List. */
        ...
} *n1, *n2, *n3, *np;
GG_SLIST_INIT(&head);                   /* Initialize the list. */
n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
GG_SLIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry));      /* Insert after. */
GG_SLIST_INSERT_AFTER(n1, n2, entries);
GG_SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */
free(n2);
n3 = GG_SLIST_FIRST(&head);
GG_SLIST_REMOVE_HEAD(&head, entries);   /* Deletion from the head. */
free(n3);
                                        /* Forward traversal. */
GG_SLIST_FOREACH(np, &head, entries)
        np-> ...
while (!GG_SLIST_EMPTY(&head)) {        /* List Deletion. */
        n1 = GG_SLIST_FIRST(&head);
        GG_SLIST_REMOVE_HEAD(&head, entries);
        free(n1);
}
 
SIMPLE QUEUES¶
A simple queue is headed by a structure defined by the 
GG_SIMPLEQ_HEAD
  macro. This structure contains a pair of pointers, one to the first element in
  the simple queue and the other to the last element in the simple queue. The
  elements are singly linked for minimum space and pointer manipulation overhead
  at the expense of O(n) removal for arbitrary elements. New elements can be
  added to the queue after an existing element, at the head of the queue, or at
  the end of the queue. A 
GG_SIMPLEQ_HEAD structure is declared as
  follows:
 
GG_SIMPLEQ_HEAD(HEADNAME, TYPE) head;
 
where 
HEADNAME is the name of the structure to be defined, and
  
TYPE is the type of the elements to be linked into the simple queue. A
  pointer to the head of the simple queue can later be declared as:
 
struct HEADNAME *headp;
 
(The names head and headp are user selectable.)
 
The macro 
GG_SIMPLEQ_ENTRYk declares a structure that connects the
  elements in the simple queue.
 
The macro 
GG_SIMPLEQ_HEAD_INITIALIZER provides a value which can be used
  to initialize a simple queue head at compile time, and is used at the point
  that the simple queue head variable is declared, like:
 
struct HEADNAME head = GG_SIMPLEQ_HEAD_INITIALIZER(head);
 
The macro 
GG_SIMPLEQ_INIT initializes the simple queue referenced by
  head.
 
The macro 
GG_SIMPLEQ_INSERT_HEAD inserts the new element elm at the head
  of the simple queue.
 
The macro 
GG_SIMPLEQ_INSERT_TAIL inserts the new element elm at the end
  of the simple queue.
 
The macro 
GG_SIMPLEQ_INSERT_AFTER inserts the new element elm after the
  ele- ment listelm.
 
The macro 
GG_SIMPLEQ_REMOVE removes elm from the simple queue.
 
The macro 
GG_SIMPLEQ_REMOVE_HEAD removes the first element from the head
  of the simple queue. For optimum efficiency, elements being removed from the
  head of the queue should explicitly use this macro instead of the generic
  
GG_SIMPLQ_REMOVE macro.
 
The macro 
GG_SIMPLEQ_EMPTY return true if the simple queue head has no
  elements.
 
The macro 
GG_SIMPLEQ_FIRST returns the first element of the simple queue
  head.
 
The macro 
GG_SIMPLEQ_FOREACH traverses the tail queue referenced by head
  in the forward direction, assigning each element in turn to var.
 
The macro 
GG_SIMPLEQ_NEXT returns the element after the element elm.
SIMPLE QUEUE EXAMPLE¶
GG_SIMPLEQ_HEAD(simplehead, entry) head;
struct simplehead *headp;               /* Simple queue head. */
struct entry {
        ...
        GG_SIMPLEQ_ENTRY(entry) entries;/* Simple queue. */
        ...
} *n1, *n2, *np;
GG_SIMPLEQ_INIT(&head);                 /* Initialize the queue. */
n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
GG_SIMPLEQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry));      /* Insert at the tail. */
GG_SIMPLEQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry));      /* Insert after. */
GG_SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);
                                        /* Forward traversal. */
GG_SIMPLEQ_FOREACH(np, &head, entries)
        np-> ...
                                        /* Delete. */
while (GG_SIMPLEQ_FIRST(&head) != NULL)
        GG_SIMPLEQ_REMOVE_HEAD(&head, entries);
if (GG_SIMPLEQ_EMPTY(&head))            /* Test for emptiness. */
        printf("nothing to do\n");
 
LISTS¶
A list is headed by a structure defined by the 
GG_LIST_HEAD macro. This
  structure contains a single pointer to the first element on the list. The
  elements are doubly linked so that an arbitrary element can be removed without
  traversing the list. New elements can be added to the list after an existing
  element, before an existing element, or at the head of the list. A
  
LIST_HEAD structure is declared as follows:
 
GG_LIST_HEAD(HEADNAME, TYPE) head;
 
where 
HEADNAME is the name of the structure to be defined, and
  
TYPE is the type of the elements to be linked into the list. A pointer
  to the head of the list can later be declared as:
 
struct HEADNAME *headp;
 
(The names head and headp are user selectable.)
 
The macro 
GG_LIST_ENTRY declares a structure that connects the elements
  in the list.
 
The macro 
GG_LIST_HEAD_INITIALIZER provides a value which can be used to
  initialize a list head at compile time, and is used at the point that the list
  head variable is declared, like:
 
struct HEADNAME head = GG_LIST_HEAD_INITIALIZER(head);
 
The macro 
GG_LIST_INIT initializes the list referenced by head.
 
The macro 
GG_LIST_INSERT_HEAD inserts the new element elm at the head of
  the list.
 
The macro 
GG_LIST_INSERT_AFTER inserts the new element elm after the
  element listelm.
 
The macro 
GG_LIST_INSERT_BEFORE inserts the new element elm before the
  element listelm.
 
The macro 
GG_LIST_REMOVE removes the element elm from the list.
 
The macro 
GG_LIST_EMPTY return true if the list head has no elements.
 
The macro 
GG_LIST_FIRST returns the first element of the list head.
 
The macro 
GG_LIST_FOREACH traverses the list referenced by head in the
  forward direction, assigning each element in turn to var.
 
The macro 
GG_LIST_NEXT returns the element after the element elm.
LIST EXAMPLE¶
GG_LIST_HEAD(listhead, entry) head;
struct listhead *headp;                 /* List head. */
struct entry {
        ...
        GG_LIST_ENTRY(entry) entries;   /* List. */
        ...
} *n1, *n2, *np;
GG_LIST_INIT(&head);                    /* Initialize the list. */
n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
GG_LIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry));      /* Insert after. */
GG_LIST_INSERT_AFTER(n1, n2, entries);
n2 = malloc(sizeof(struct entry));      /* Insert before. */
GG_LIST_INSERT_BEFORE(n1, n2, entries);
                                        /* Forward traversal. */
GG_LIST_FOREACH(np, &head, entries)
        np-> ...
                                        /* Delete. */
while (GG_LIST_FIRST(&head) != NULL)
        GG_LIST_REMOVE(LIST_FIRST(&head), entries);
if (GG_LIST_EMPTY(&head))               /* Test for emptiness. */
        printf("nothing to do\n");
 
TAIL QUEUES¶
A tail queue is headed by a structure defined by the 
GG_TAILQ_HEAD macro.
  This structure contains a pair of pointers, one to the first element in the
  tail queue and the other to the last element in the tail queue. The elements
  are doubly linked so that an arbitrary element can be removed without
  traversing the tail queue. New elements can be added to the queue after an
  existing element, before an existing element, at the head of the queue, or at
  the end the queue. A 
GG_TAILQ_HEAD structure is declared as follows:
 
TAILQ_HEAD(HEADNAME, TYPE) head;
 
where 
HEADNAME is the name of the structure to be defined, and
  
TYPE is the type of the elements to be linked into the tail queue. A
  pointer to the head of the tail queue can later be declared as:
 
struct HEADNAME *headp;
 
(The names head and headp are user selectable.)
 
The macro 
GG_TAILQ_ENTRY declares a structure that connects the elements
  in the tail queue.
 
The macro 
GG_TAILQ_HEAD_INITIALIZER provides a value which can be used to
  initialize a tail queue head at compile time, and is used at the point that
  the tail queue head variable is declared, like:
 
struct HEADNAME head = GG_TAILQ_HEAD_INITIALIZER(head);
 
The macro 
GG_TAILQ_INIT initializes the tail queue referenced by head.
 
The macro 
GG_TAILQ_INSERT_HEAD inserts the new element elm at the head of
  the tail queue.
 
The macro 
GG_TAILQ_INSERT_TAIL inserts the new element elm at the end of
  the tail queue.
 
The macro 
GG_TAILQ_INSERT_AFTER inserts the new element elm after the
  element listelm.
 
The macro 
GG_TAILQ_INSERT_BEFORE inserts the new element elm before the
  element listelm.
 
The macro 
GG_TAILQ_REMOVE removes the element elm from the tail queue.
 
The macro 
GG_TAILQ_EMPTY return true if the tail queue head has no
  elements.
 
The macro 
GG_TAILQ_FIRST returns the first element of the tail queue
  head.
 
The macro 
GG_TAILQ_FOREACH traverses the tail queue referenced by head in
  the forward direction, assigning each element in turn to var.
 
The macro 
GG_TAILQ_FOREACH_REVERSE traverses the tail queue referenced by
  head in the reverse direction, assigning each element in turn to var.
 
The macro 
GG_TAILQ_NEXT returns the element after the element elm
TAIL QUEUE EXAMPLE¶
GG_TAILQ_HEAD(tailhead, entry) head;
struct tailhead *headp;                 /* Tail queue head. */
struct entry {
        ...
        GG_TAILQ_ENTRY(entry) entries;  /* Tail queue. */
        ...
} *n1, *n2, *np;
GG_TAILQ_INIT(&head);                   /* Initialize the queue. */
n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
GG_TAILQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry));      /* Insert at the tail. */
GG_TAILQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry));      /* Insert after. */
GG_TAILQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry));      /* Insert before. */
GG_TAILQ_INSERT_BEFORE(n1, n2, entries);
                                        /* Forward traversal. */
GG_TAILQ_FOREACH(np, &head, entries)
        np-> ...
                                        /* Reverse traversal. */
GG_TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
        np-> ...
                                        /* Delete. */
while (GG_TAILQ_FIRST(&head) != NULL)
        GG_TAILQ_REMOVE(&head, GG_TAILQ_FIRST(&head), entries);
if (GG_TAILQ_EMPTY(&head))              /* Test for emptiness. */
        printf("nothing to do\n");
 
CIRCULAR QUEUES¶
A circular queue is headed by a structure defined by the 
GG_CIRCLEQ_HEAD
  macro. This structure contains a pair of pointers, one to the first element in
  the circular queue and the other to the last element in the circular queue.
  The elements are doubly linked so that an arbitrary element can be removed
  without traversing the queue. New elements can be added to the queue after an
  existing element, before an existing element, at the head of the queue, or at
  the end of the queue. A 
GG_CIRCLEQ_HEAD structure is declared as
  follows:
 
GG_CIRCLEQ_HEAD(HEADNAME, TYPE) head;
 
where 
HEADNAME is the name of the structure to be defined, and
  
TYPE is the type of the elements to be linked into the circular queue.
  A pointer to the head of the circular queue can later be declared as:
 
struct HEADNAME *headp;
 
(The names head and headp are user selectable.)
 
The macro 
GG_CIRCLEQ_ENTRY declares a structure that connects the
  elements in the circular queue.
 
The macro 
GG_CIRCLEQ_HEAD_INITIALIZER provides a value which can be used
  to initialize a circular queue head at compile time, and is used at the point
  that the circular queue head variable is declared, like:
 
struct HEADNAME head = GG_CIRCLEQ_HEAD_INITIALIZER(head);
 
The macro 
GG_CIRCLEQ_INIT initializes the circular queue referenced by
  head.
 
The macro 
GG_CIRCLEQ_INSERT_HEAD inserts the new element elm at the head
  of the circular queue.
 
The macro 
GG_CIRCLEQ_INSERT_TAIL inserts the new element elm at the end
  of the circular queue.
 
The macro 
GG_CIRCLEQ_INSERT_AFTER inserts the new element elm after the
  element listelm.
 
The macro 
GG_CIRCLEQ_INSERT_BEFORE inserts the new element elm before the
  element listelm.
 
The macro 
GG_CIRCLEQ_REMOVE removes the element elm from the circular
  queue.
 
The macro 
GG_CIRCLEQ_EMPTY return true if the circular queue head has no
  elements.
 
The macro 
GG_CIRCLEQ_FIRST returns the first element of the circular
  queue head.
 
The macro 
GG_CICRLEQ_FOREACH traverses the circle queue referenced by
  head in the forward direction, assigning each element in turn to var.
 
The macro 
GG_CICRLEQ_FOREACH_REVERSE traverses the circle queue
  referenced by head in the reverse direction, assigning each element in turn to
  var.
 
The macro 
GG_CIRCLEQ_LAST returns the last element of the circular queue
  head.
 
The macro 
GG_CIRCLEQ_NEXT returns the element after the element elm.
 
The macro 
GG_CIRCLEQ_PREV returns the element before the element elm.
CIRCULAR QUEUE EXAMPLE¶
GG_CIRCLEQ_HEAD(circleq, entry) head;
struct circleq *headp;                  /* Circular queue head. */
struct entry {
       ...
       GG_CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */
       ...
} *n1, *n2, *np;
GG_CIRCLEQ_INIT(&head);                 /* Initialize the circular queue. */
n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
GG_CIRCLEQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry));      /* Insert at the tail. */
GG_CIRCLEQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry));      /* Insert after. */
GG_CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry));      /* Insert before. */
GG_CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);
                                        /* Forward traversal. */
GG_CIRCLEQ_FOREACH(np, &head, entries)
        np-> ...
                                        /* Reverse traversal. */
GG_CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
        np-> ...
                                        /* Delete. */
while (GG_CIRCLEQ_FIRST(&head) != (void *)&head)
        GG_CIRCLEQ_REMOVE(&head, GG_CIRCLEQ_FIRST(&head), entries);
if (GG_CIRCLEQ_EMPTY(&head))            /* Test for emptiness. */
        printf("nothing to do\n");
 
SEE ALSO¶
gg-tree(3)