table of contents
other versions
- wheezy 3.4.1+dfsg-1+deb70u1
- jessie 3.5.0-4
- jessie-backports 3.7.0-1~bpo8+1
- testing 3.7.0-2
- unstable 3.7.0-2
| dlaed5.f(3) | LAPACK | dlaed5.f(3) |
NAME¶
dlaed5.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine dlaed5 (I, D, Z, DELTA, RHO, DLAM)
Function/Subroutine Documentation¶
subroutine dlaed5 (integerI, double precision, dimension( 2 )D, double precision, dimension( 2 )Z, double precision, dimension( 2 )DELTA, double precisionRHO, double precisionDLAM)¶
DLAED5 Purpose: This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
I
D
Z
DELTA
RHO
DLAM
Author:
I is INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D is DOUBLE PRECISION array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z is DOUBLE PRECISION array, dimension (2)
The components of the updating vector.
DELTA is DOUBLE PRECISION array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM is DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Ren-Cang Li, Computer Science Division,
University of California at Berkeley, USA
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Sun May 26 2013 | Version 3.4.1 |