table of contents
other versions
- wheezy 3.4.1+dfsg-1+deb70u1
- jessie 3.5.0-4
- jessie-backports 3.7.0-1~bpo8+1
- testing 3.7.0-2
- unstable 3.7.0-2
| dptrfs.f(3) | LAPACK | dptrfs.f(3) |
NAME¶
dptrfs.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine dptrfs (N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO)
Function/Subroutine Documentation¶
subroutine dptrfs (integerN, integerNRHS, double precision, dimension( * )D, double precision, dimension( * )E, double precision, dimension( * )DF, double precision, dimension( * )EF, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, double precision, dimension( * )WORK, integerINFO)¶
DPTRFS Purpose:DPTRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution.
N
NRHS
D
E
DF
EF
B
LDB
X
LDX
FERR
BERR
WORK
INFO
Internal Parameters:
N is INTEGER
The order of the matrix A. N >= 0.
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.
EF is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPTTRS.
On exit, the improved solution matrix X.
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR is DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK is DOUBLE PRECISION array, dimension (2*N)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
ITMAX is the maximum number of steps of iterative refinement.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Sun May 26 2013 | Version 3.4.1 |