table of contents
other versions
- wheezy 3.4.1+dfsg-1+deb70u1
- jessie 3.5.0-4
- jessie-backports 3.7.0-1~bpo8+1
- testing 3.7.0-2
- unstable 3.7.0-2
| sgerqf.f(3) | LAPACK | sgerqf.f(3) |
NAME¶
sgerqf.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine sgerqf (M, N, A, LDA, TAU, WORK, LWORK, INFO)
Function/Subroutine Documentation¶
subroutine sgerqf (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)¶
SGERQF Purpose:SGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.
M
N
A
LDA
TAU
WORK
LWORK
INFO
Author:
M is INTEGER
The number of rows of the matrix A. M >= 0.
N is INTEGER
The number of columns of the matrix A. N >= 0.
A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of min(m,n) elementary
reflectors (see Further Details).
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Sun May 26 2013 | Version 3.4.1 |