table of contents
sggsvd.f(3) | LAPACK | sggsvd.f(3) |
NAME¶
sggsvd.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine sggsvd (JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK, INFO)
Function/Subroutine Documentation¶
subroutine sggsvd (characterJOBU, characterJOBV, characterJOBQ, integerM, integerN, integerP, integerK, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( * )ALPHA, real, dimension( * )BETA, real, dimension( ldu, * )U, integerLDU, real, dimension( ldv, * )V, integerLDV, real, dimension( ldq, * )Q, integerLDQ, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)¶
SGGSVD computes the singular value decomposition (SVD) for OTHER matrices Purpose:SGGSVD computes the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B: U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R ) where U, V and Q are orthogonal matrices. Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T, then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the following structures, respectively: If M-K-L >= 0, K L D1 = K ( I 0 ) L ( 0 C ) M-K-L ( 0 0 ) K L D2 = L ( 0 S ) P-L ( 0 0 ) N-K-L K L ( 0 R ) = K ( 0 R11 R12 ) L ( 0 0 R22 ) where C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), S = diag( BETA(K+1), ... , BETA(K+L) ), C**2 + S**2 = I. R is stored in A(1:K+L,N-K-L+1:N) on exit. If M-K-L < 0, K M-K K+L-M D1 = K ( I 0 0 ) M-K ( 0 C 0 ) K M-K K+L-M D2 = M-K ( 0 S 0 ) K+L-M ( 0 0 I ) P-L ( 0 0 0 ) N-K-L K M-K K+L-M ( 0 R ) = K ( 0 R11 R12 R13 ) M-K ( 0 0 R22 R23 ) K+L-M ( 0 0 0 R33 ) where C = diag( ALPHA(K+1), ... , ALPHA(M) ), S = diag( BETA(K+1), ... , BETA(M) ), C**2 + S**2 = I. (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored ( 0 R22 R23 ) in B(M-K+1:L,N+M-K-L+1:N) on exit. The routine computes C, S, R, and optionally the orthogonal transformation matrices U, V and Q. In particular, if B is an N-by-N nonsingular matrix, then the GSVD of A and B implicitly gives the SVD of A*inv(B): A*inv(B) = U*(D1*inv(D2))*V**T. If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem: A**T*A x = lambda* B**T*B x. In some literature, the GSVD of A and B is presented in the form U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 ) where U and V are orthogonal and X is nonsingular, D1 and D2 are ``diagonal''. The former GSVD form can be converted to the latter form by taking the nonsingular matrix X as X = Q*( I 0 ) ( 0 inv(R) ).
JOBU
JOBV
JOBQ
M
N
P
K
L
A
LDA
B
LDB
ALPHA
BETA
U
LDU
V
LDV
Q
LDQ
WORK
IWORK
INFO
Internal Parameters:
JOBU is CHARACTER*1 = 'U': Orthogonal matrix U is computed; = 'N': U is not computed.
JOBV is CHARACTER*1 = 'V': Orthogonal matrix V is computed; = 'N': V is not computed.
JOBQ is CHARACTER*1 = 'Q': Orthogonal matrix Q is computed; = 'N': Q is not computed.
M is INTEGER The number of rows of the matrix A. M >= 0.
N is INTEGER The number of columns of the matrices A and B. N >= 0.
P is INTEGER The number of rows of the matrix B. P >= 0.
K is INTEGER
L is INTEGER On exit, K and L specify the dimension of the subblocks described in Purpose. K + L = effective numerical rank of (A**T,B**T)**T.
A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A contains the triangular matrix R, or part of R. See Purpose for details.
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
B is REAL array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B contains the triangular matrix R if M-K-L < 0. See Purpose for details.
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,P).
ALPHA is REAL array, dimension (N)
BETA is REAL array, dimension (N) On exit, ALPHA and BETA contain the generalized singular value pairs of A and B; ALPHA(1:K) = 1, BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = C, BETA(K+1:K+L) = S, or if M-K-L < 0, ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 BETA(K+1:M) =S, BETA(M+1:K+L) =1 and ALPHA(K+L+1:N) = 0 BETA(K+L+1:N) = 0
U is REAL array, dimension (LDU,M) If JOBU = 'U', U contains the M-by-M orthogonal matrix U. If JOBU = 'N', U is not referenced.
LDU is INTEGER The leading dimension of the array U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
V is REAL array, dimension (LDV,P) If JOBV = 'V', V contains the P-by-P orthogonal matrix V. If JOBV = 'N', V is not referenced.
LDV is INTEGER The leading dimension of the array V. LDV >= max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
Q is REAL array, dimension (LDQ,N) If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. If JOBQ = 'N', Q is not referenced.
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK is REAL array, dimension (max(3*N,M,P)+N)
IWORK is INTEGER array, dimension (N) On exit, IWORK stores the sorting information. More precisely, the following loop will sort ALPHA for I = K+1, min(M,K+L) swap ALPHA(I) and ALPHA(IWORK(I)) endfor such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, the Jacobi-type procedure failed to converge. For further details, see subroutine STGSJA.
TOLA REAL TOLB REAL TOLA and TOLB are the thresholds to determine the effective rank of (A**T,B**T)**T. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Ming Gu and Huan Ren, Computer Science
Division, University of California at Berkeley, USA
Author¶
Generated automatically by Doxygen for LAPACK from the source code.Sun May 26 2013 | Version 3.4.1 |