table of contents
other versions
- wheezy 3.4.1+dfsg-1+deb70u1
 - jessie 3.5.0-4
 - jessie-backports 3.7.0-1~bpo8+1
 - testing 3.7.0-2
 - unstable 3.7.0-2
 
| slasd5.f(3) | LAPACK | slasd5.f(3) | 
NAME¶
slasd5.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine slasd5 (I, D, Z, DELTA, RHO, DSIGMA, WORK)
Function/Subroutine Documentation¶
subroutine slasd5 (integerI, real, dimension( 2 )D, real, dimension( 2 )Z, real, dimension( 2 )DELTA, realRHO, realDSIGMA, real, dimension( 2 )WORK)¶
SLASD5 Purpose: This subroutine computes the square root of the I-th eigenvalue
 of a positive symmetric rank-one modification of a 2-by-2 diagonal
 matrix
            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
 The diagonal entries in the array D are assumed to satisfy
            0 <= D(i) < D(j)  for  i < j .
 We also assume RHO > 0 and that the Euclidean norm of the vector
 Z is one.
I
 
D
 
Z
 
DELTA
 
RHO
 
DSIGMA
 
WORK
 
Author:
          I is INTEGER
         The index of the eigenvalue to be computed.  I = 1 or I = 2.
          D is REAL array, dimension (2)
         The original eigenvalues.  We assume 0 <= D(1) < D(2).
          Z is REAL array, dimension (2)
         The components of the updating vector.
          DELTA is REAL array, dimension (2)
         Contains (D(j) - sigma_I) in its  j-th component.
         The vector DELTA contains the information necessary
         to construct the eigenvectors.
          RHO is REAL
         The scalar in the symmetric updating formula.
          DSIGMA is REAL
         The computed sigma_I, the I-th updated eigenvalue.
          WORK is REAL array, dimension (2)
         WORK contains (D(j) + sigma_I) in its  j-th component.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors: 
Ren-Cang Li, Computer Science Division,
  University of California at Berkeley, USA
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Sun May 26 2013 | Version 3.4.1 |