table of contents
other versions
- wheezy 3.4.1+dfsg-1+deb70u1
 - jessie 3.5.0-4
 - jessie-backports 3.7.0-1~bpo8+1
 - testing 3.7.0-2
 - unstable 3.7.0-2
 
| zhbgvd.f(3) | LAPACK | zhbgvd.f(3) | 
NAME¶
zhbgvd.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine zhbgvd (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
Function/Subroutine Documentation¶
subroutine zhbgvd (characterJOBZ, characterUPLO, integerN, integerKA, integerKB, complex*16, dimension( ldab, * )AB, integerLDAB, complex*16, dimension( ldbb, * )BB, integerLDBB, double precision, dimension( * )W, complex*16, dimension( ldz, * )Z, integerLDZ, complex*16, dimension( * )WORK, integerLWORK, double precision, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)¶
ZHBGST Purpose:ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
JOBZ
 
UPLO
 
N
 
KA
 
KB
 
AB
 
LDAB
 
BB
 
LDBB
 
W
 
Z
 
LDZ
 
WORK
 
LWORK
 
RWORK
 
LRWORK
 
IWORK
 
LIWORK
 
INFO
 
Author:
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
          AB is COMPLEX*16 array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
          On exit, the contents of AB are destroyed.
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.
          BB is COMPLEX*16 array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
          On exit, the factor S from the split Cholesky factorization
          B = S**H*S, as returned by ZPBSTF.
          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
          Z is COMPLEX*16 array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**H*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK >= 1.
          If JOBZ = 'N' and N > 1, LWORK >= N.
          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal sizes of the WORK, RWORK and
          IWORK arrays, returns these values as the first entries of
          the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK >= 1.
          If JOBZ = 'N' and N > 1, LRWORK >= N.
          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
          If LRWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ = 'N' or N <= 1, LIWORK >= 1.
          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  the algorithm failed to converge:
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors: 
Mark Fahey, Department of Mathematics, Univ.
  of Kentucky, USA
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Sun May 26 2013 | Version 3.4.1 |