NAME¶
dia - diagonal matrix
DESCRIPTION¶
The class implements a diagonal matrix. A declaration whithout any parametrers
  correspond to a null size matrix:
 
        dia<Float> d;
 
The constructor can be invocated whith a 
ownership parameter (see
  
distributor(2)):
 
        dia<Float> d(ownership);
 
or an initialiser, either a vector (see 
vec(2)):
 
        dia<Float> d(v);
 
or a csr matrix (see 
csr(2)):
 
        dia<Float> d(a);
 
The conversion from 
dia to 
vec or 
csr is explicit.
When a diagonal matrix is constructed from a 
csr matrix, the definition
  of the diagonal of matrix is @emph{always} a vector of size
  
row_ownership which contains the elements in rows 1 to 
nrow of
  the matrix that are contained in the diagonal. If the diagonal element falls
  outside the matrix, i.e. 
ncol < 
nrow then it is defined as a
  zero entry.
PRECONDITIONER INTERFACE¶
The class presents a preconditioner interface, as the 
solver(2), so that it can
  be used as preconditioner to the iterative solvers suite (see 
pcg(4)).
IMPLEMENTATION¶
template<class T, class M = rheo_default_memory_model>
class dia : public vec<T,M> {
public:
// typedefs:
    typedef typename vec<T,M>::size_type       size_type;
    typedef typename vec<T,M>::iterator          iterator;
    typedef typename vec<T,M>::const_iterator    const_iterator;
// allocators/deallocators:
    explicit dia (const distributor& ownership = distributor(),
                  const T&  init_val = std::numeric_limits<T>::max());
    explicit dia (const vec<T,M>& u);
    explicit dia (const csr<T,M>& a);
    dia<T,M>& operator= (const T& lambda);
// preconditionner interface: solves d*x=b
    vec<T,M> solve (const vec<T,M>& b) const;
    vec<T,M> trans_solve (const vec<T,M>& b) const;
};
template <class T, class M>
dia<T,M> operator/ (const T& lambda, const dia<T,M>& d);
template <class T, class M>
vec<T,M> operator* (const dia<T,M>& d, const vec<T,M>& x);
 
 
SEE ALSO¶
distributor(2), 
vec(2), 
csr(2), 
solver(2), 
pcg(4)