| PZGECON(l) | LAPACK routine (version 1.5) | PZGECON(l) |
NAME¶
PZGECON - estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PZGETRFSYNOPSIS¶
- SUBROUTINE PZGECON(
- NORM, N, A, IA, JA, DESCA, ANORM, RCOND, WORK, LWORK, RWORK, LRWORK, INFO )
- CHARACTER
- NORM
- INTEGER
- IA, INFO, JA, LRWORK, LWORK, N
- DOUBLE
- PRECISION ANORM, RCOND
- INTEGER
- DESCA( * )
- DOUBLE
- PRECISION RWORK( * )
- COMPLEX*16
- A( * ), WORK( * )
PURPOSE¶
PZGECON estimates the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PZGETRF.RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1) ) *
norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).
DTYPE_A = 1.
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
array A.
array A.
the rows of the array.
the columns of the array.
row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
array. LLD_A >= MAX(1,LOCr(M_A)).
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS¶
- NORM (global input) CHARACTER
- Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm= 'I': Infinity-norm
- N (global input) INTEGER
-
The order of the distributed matrix A(IA:IA+N-1,JA:JA+N-1). N >= 0.
- A (local input) COMPLEX*16 pointer into the local memory
- to an array of dimension ( LLD_A, LOCc(JA+N-1) ). On entry, this array contains the local pieces of the factors L and U from the factorization A(IA:IA+N-1,JA:JA+N-1) = P*L*U; the unit diagonal elements of L are not stored.
- IA (global input) INTEGER
- The row index in the global array A indicating the first row of sub( A ).
- JA (global input) INTEGER
- The column index in the global array A indicating the first column of sub( A ).
- DESCA (global and local input) INTEGER array of dimension DLEN_.
- The array descriptor for the distributed matrix A.
- ANORM (global input) DOUBLE PRECISION
- If NORM = '1' or 'O', the 1-norm of the original distributed matrix A(IA:IA+N-1,JA:JA+N-1). If NORM = 'I', the infinity-norm of the original distributed matrix A(IA:IA+N-1,JA:JA+N-1).
- RCOND (global output) DOUBLE PRECISION
- The reciprocal of the condition number of the distributed
matrix A(IA:IA+N-1,JA:JA+N-1), computed as
RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1) ) *norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).
- WORK (local workspace/local output) COMPLEX*16 array,
- dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK.
- LWORK (local or global input) INTEGER
- The dimension of the array WORK. LWORK is local input and
must be at least LWORK >= 2*LOCr(N+MOD(IA-1,MB_A)) + MAX( 2,
MAX(NB_A*CEIL(NPROW-1,NPCOL),LOCc(N+MOD(JA-1,NB_A)) +
NB_A*CEIL(NPCOL-1,NPROW)) ).
LOCr and LOCc values can be computed using the ScaLAPACK tool function NUMROC; NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO.If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.
- RWORK (local workspace/local output) DOUBLE PRECISION array,
- dimension (LRWORK) On exit, RWORK(1) returns the minimal and optimal LRWORK.
- LRWORK (local or global input) INTEGER
- The dimension of the array RWORK. LRWORK is local input and
must be at least LRWORK >= 2*LOCc(N+MOD(JA-1,NB_A)).
If LRWORK = -1, then LRWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.
- INFO (global output) INTEGER
- = 0: successful exit
< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.
| 12 May 1997 | LAPACK version 1.5 |