NAME¶
math::special - Special mathematical functions
SYNOPSIS¶
package require
Tcl ?8.3?
package require
math::special ?0.2?
::math::special::Beta x y
::math::special::Gamma x y
::math::special::erf x
::math::special::erfc x
::math::special::J0 x
::math::special::J1 x
::math::special::Jn n x
::math::special::J1/2 x
::math::special::J-1/2 x
::math::special::I_n x
::math::special::cn u k
::math::special::dn u k
::math::special::sn u k
::math::special::elliptic_K k
::math::special::elliptic_E k
::math::special::exponential_Ei x
::math::special::exponential_En n x
::math::special::exponential_li x
::math::special::exponential_Ci x
::math::special::exponential_Si x
::math::special::exponential_Chi x
::math::special::exponential_Shi x
::math::special::fresnel_C x
::math::special::fresnel_S x
::math::special::sinc x
::math::special::legendre n
::math::special::chebyshev n
::math::special::laguerre alpha n
::math::special::hermite n
DESCRIPTION¶
This package implements several so-called special functions, like the Gamma
function, the Bessel functions and such.
Each function is implemented by a procedure that bears its name (well, in close
approximation):
- •
- J0 for the zeroth-order Bessel function of the first
kind
- •
- J1 for the first-order Bessel function of the first
kind
- •
- Jn for the nth-order Bessel function of the first kind
- •
- J1/2 for the half-order Bessel function of the first
kind
- •
- J-1/2 for the minus-half-order Bessel function of the first
kind
- •
- I_n for the modified Bessel function of the first kind of
order n
- •
- Gamma for the Gamma function, erf and erfc for the error
function and the complementary error function
- •
- fresnel_C and fresnel_S for the Fresnel integrals
- •
- elliptic_K and elliptic_E (complete elliptic
integrals)
- •
- exponent_Ei and other functions related to the so-called
exponential integrals
- •
- legendre, hermite: some of the classical orthogonal
polynomials.
OVERVIEW¶
In the following table several characteristics of the functions in this package
are summarized: the domain for the argument, the values for the parameters and
error bounds.
Family | Function | Domain x | Parameter | Error bound
-------------+-------------+-------------+-------------+--------------
Bessel | J0, J1, | all of R | n = integer | < 1.0e-8
| Jn | | | (|x|<20, n<20)
Bessel | J1/2, J-1/2,| x > 0 | n = integer | exact
Bessel | I_n | all of R | n = integer | < 1.0e-6
| | | |
Elliptic | cn | 0 <= x <= 1 | -- | < 1.0e-10
functions | dn | 0 <= x <= 1 | -- | < 1.0e-10
| sn | 0 <= x <= 1 | -- | < 1.0e-10
Elliptic | K | 0 <= x < 1 | -- | < 1.0e-6
integrals | E | 0 <= x < 1 | -- | < 1.0e-6
| | | |
Error | erf | | -- |
functions | erfc | | |
| ierfc_n | | |
| | | |
Exponential | Ei | x != 0 | -- | < 1.0e-10 (relative)
integrals | En | x > 0 | -- | as Ei
| li | x > 0 | -- | as Ei
| Chi | x > 0 | -- | < 1.0e-8
| Shi | x > 0 | -- | < 1.0e-8
| Ci | x > 0 | -- | < 2.0e-4
| Si | x > 0 | -- | < 2.0e-4
| | | |
Fresnel | C | all of R | -- | < 2.0e-3
integrals | S | all of R | -- | < 2.0e-3
| | | |
general | Beta | (see Gamma) | -- | < 1.0e-9
| Gamma | x != 0,-1, | -- | < 1.0e-9
| | -2, ... | |
| sinc | all of R | -- | exact
| | | |
orthogonal | Legendre | all of R | n = 0,1,... | exact
polynomials | Chebyshev | all of R | n = 0,1,... | exact
| Laguerre | all of R | n = 0,1,... | exact
| | | alpha el. R |
| Hermite | all of R | n = 0,1,... | exact
Note: Some of the error bounds are estimated, as no "formal"
bounds were available with the implemented approximation method, others hold
for the auxiliary functions used for estimating the primary functions.
The following well-known functions are currently missing from the package:
- •
- Bessel functions of the second kind (Y_n, K_n)
- •
- Bessel functions of arbitrary order (and hence the Airy
functions)
- •
- Chebyshev polynomials of the second kind (U_n)
- •
- The digamma function (psi)
- •
- The incomplete gamma and beta functions
PROCEDURES¶
The package defines the following public procedures:
- ::math::special::Beta x y
- Compute the Beta function for arguments "x" and
"y"
- float x
- First argument for the Beta function
- float y
- Second argument for the Beta function
- ::math::special::Gamma x y
- Compute the Gamma function for argument "x"
- float x
- Argument for the Gamma function
- ::math::special::erf x
- Compute the error function for argument "x"
- float x
- Argument for the error function
- ::math::special::erfc x
- Compute the complementary error function for argument
"x"
- float x
- Argument for the complementary error function
- ::math::special::J0 x
- Compute the zeroth-order Bessel function of the first kind
for the argument "x"
- float x
- Argument for the Bessel function
- ::math::special::J1 x
- Compute the first-order Bessel function of the first kind
for the argument "x"
- float x
- Argument for the Bessel function
- ::math::special::Jn n x
- Compute the nth-order Bessel function of the first kind for
the argument "x"
- integer n
- Order of the Bessel function
- float x
- Argument for the Bessel function
- ::math::special::J1/2 x
- Compute the half-order Bessel function of the first kind
for the argument "x"
- float x
- Argument for the Bessel function
- ::math::special::J-1/2 x
- Compute the minus-half-order Bessel function of the first
kind for the argument "x"
- float x
- Argument for the Bessel function
- ::math::special::I_n x
- Compute the modified Bessel function of the first kind of
order n for the argument "x"
- int x
- Positive integer order of the function
- float x
- Argument for the function
- ::math::special::cn u k
- Compute the elliptic function cn for the argument
"u" and parameter "k".
- float u
- Argument for the function
- float k
- Parameter
- ::math::special::dn u k
- Compute the elliptic function dn for the argument
"u" and parameter "k".
- float u
- Argument for the function
- float k
- Parameter
- ::math::special::sn u k
- Compute the elliptic function sn for the argument
"u" and parameter "k".
- float u
- Argument for the function
- float k
- Parameter
- ::math::special::elliptic_K k
- Compute the complete elliptic integral of the first kind
for the argument "k"
- float k
- Argument for the function
- ::math::special::elliptic_E k
- Compute the complete elliptic integral of the second kind
for the argument "k"
- float k
- Argument for the function
- ::math::special::exponential_Ei x
- Compute the exponential integral of the second kind for the
argument "x"
- float x
- Argument for the function (x != 0)
- ::math::special::exponential_En n
x
- Compute the exponential integral of the first kind for the
argument "x" and order n
- int n
- Order of the integral (n >= 0)
- float x
- Argument for the function (x >= 0)
- ::math::special::exponential_li x
- Compute the logarithmic integral for the argument
"x"
- float x
- Argument for the function (x > 0)
- ::math::special::exponential_Ci x
- Compute the cosine integral for the argument
"x"
- float x
- Argument for the function (x > 0)
- ::math::special::exponential_Si x
- Compute the sine integral for the argument
"x"
- float x
- Argument for the function (x > 0)
- ::math::special::exponential_Chi x
- Compute the hyperbolic cosine integral for the argument
"x"
- float x
- Argument for the function (x > 0)
- ::math::special::exponential_Shi x
- Compute the hyperbolic sine integral for the argument
"x"
- float x
- Argument for the function (x > 0)
- ::math::special::fresnel_C x
- Compute the Fresnel cosine integral for real argument
x
- float x
- Argument for the function
- ::math::special::fresnel_S x
- Compute the Fresnel sine integral for real argument x
- float x
- Argument for the function
- ::math::special::sinc x
- Compute the sinc function for real argument x
- float x
- Argument for the function
- ::math::special::legendre n
- Return the Legendre polynomial of degree n (see THE
ORTHOGONAL POLYNOMIALS)
- int n
- Degree of the polynomial
- ::math::special::chebyshev n
- Return the Chebyshev polynomial of degree n (of the first
kind)
- int n
- Degree of the polynomial
- ::math::special::laguerre alpha n
- Return the Laguerre polynomial of degree n with parameter
alpha
- float alpha
- Parameter of the Laguerre polynomial
- int n
- Degree of the polynomial
- ::math::special::hermite n
- Return the Hermite polynomial of degree n
- int n
- Degree of the polynomial
THE ORTHOGONAL POLYNOMIALS¶
For dealing with the classical families of orthogonal polynomials, the package
relies on the
math::polynomials package. To evaluate the polynomial at
some coordinate, use the
evalPolyn command:
set leg2 [::math::special::legendre 2]
puts "Value at x=$x: [::math::polynomials::evalPolyn $leg2 $x]"
The return value from the
legendre and other commands is actually the
definition of the corresponding polynomial as used in that package.
It should be noted, that the actual implementation of J0 and J1 depends on
straightforward Gaussian quadrature formulas. The (absolute) accuracy of the
results is of the order 1.0e-4 or better. The main reason to implement them
like that was that it was fast to do (the formulas are simple) and the
computations are fast too.
The implementation of J1/2 does not suffer from this: this function can be
expressed exactly in terms of elementary functions.
The functions J0 and J1 are the ones you will encounter most frequently in
practice.
The computation of I_n is based on Miller's algorithm for computing the minimal
function from recurrence relations.
The computation of the Gamma and Beta functions relies on the combinatorics
package, whereas that of the error functions relies on the statistics package.
The computation of the complete elliptic integrals uses the AGM algorithm.
Much information about these functions can be found in:
Abramowitz and Stegun:
Handbook of Mathematical Functions (Dover, ISBN
486-61272-4)
BUGS, IDEAS, FEEDBACK¶
This document, and the package it describes, will undoubtedly contain bugs and
other problems. Please report such in the category
math :: special of
the
Tcllib SF Trackers
[
http://sourceforge.net/tracker/?group_id=12883]. Please also report any ideas
for enhancements you may have for either package and/or documentation.
KEYWORDS¶
Bessel functions, error function, math, special functions
CATEGORY¶
Mathematics
COPYRIGHT¶
Copyright (c) 2004 Arjen Markus <arjenmarkus@users.sourceforge.net>