NAME¶
vw - Vowpal Wabbit -- fast online learning tool
DESCRIPTION¶
VW options:¶
- -h [ --help ]
- Look here: http://hunch.net/~vw/ and click on
Tutorial.
- --active_learning
- active learning mode
- --active_simulation
- active learning simulation mode
- --active_mellowness arg (=8)
- active learning mellowness parameter c_0. Default 8
- --adaptive
- use adaptive, individual learning rates.
- --exact_adaptive_norm
- use a more expensive exact norm for adaptive learning
rates.
- -a [ --audit ]
- print weights of features
- -b [ --bit_precision ] arg
- number of bits in the feature table
- --bfgs
- use bfgs optimization
- -c [ --cache ]
- Use a cache. The default is <data>.cache
- --cache_file arg
- The location(s) of cache_file.
- --compressed
- use gzip format whenever possible. If a cache file is being
created, this option creates a compressed cache file. A mixture of
raw-text & compressed inputs are supported with autodetection.
- --conjugate_gradient
- use conjugate gradient based optimization
- --nonormalize
- Do not normalize online updates
- --l1 arg (=0)
- l_1 lambda
- --l2 arg (=0)
- l_2 lambda
- -d [ --data ] arg
- Example Set
- --daemon
- persistent daemon mode on port 26542
- --num_children arg (=10)
- number of children for persistent daemon mode
- --pid_file arg
- Write pid file in persistent daemon mode
- --decay_learning_rate arg (=1)
- Set Decay factor for learning_rate between passes
- --input_feature_regularizer arg
- Per feature regularization input file
- -f [ --final_regressor ] arg
- Final regressor
- --readable_model arg
- Output human-readable final regressor
- --hash arg
- how to hash the features. Available options: strings,
all
- --hessian_on
- use second derivative in line search
- --version
- Version information
- --ignore arg
- ignore namespaces beginning with character <arg>
- --initial_weight arg (=0)
- Set all weights to an initial value of 1.
- -i [ --initial_regressor ] arg
- Initial regressor(s)
- --initial_pass_length arg
(=18446744073709551615)
- initial number of examples per pass
- --initial_t arg (=1)
- initial t value
- --lda arg
- Run lda with <int> topics
- --lda_alpha arg (=0.100000001)
- Prior on sparsity of per-document topic weights
- --lda_rho arg (=0.100000001)
- Prior on sparsity of topic distributions
- --lda_D arg (=10000)
- Number of documents
- --minibatch arg (=1)
- Minibatch size, for LDA
- --span_server arg
- Location of server for setting up spanning tree
- --min_prediction arg
- Smallest prediction to output
- --max_prediction arg
- Largest prediction to output
- --mem arg (=15)
- memory in bfgs
- --noconstant
- Don't add a constant feature
- --noop
- do no learning
- --output_feature_regularizer_binary arg
- Per feature regularization output file
- --output_feature_regularizer_text arg Per feature
regularization output file,
- in text
- --port arg
- port to listen on
- --power_t arg (=0.5)
- t power value
- -l [ --learning_rate ] arg (=10)
- Set Learning Rate
- --passes arg (=1)
- Number of Training Passes
- --termination arg (=0.00100000005)
- Termination threshold
- -p [ --predictions ] arg
- File to output predictions to
- -q [ --quadratic ] arg
- Create and use quadratic features
- --quiet
- Don't output diagnostics
- --rank arg (=0)
- rank for matrix factorization.
- --random_weights arg
- make initial weights random
- -r [ --raw_predictions ] arg
- File to output unnormalized predictions to
- --save_per_pass
- Save the model after every pass over data
- --sendto arg
- send examples to <host>
- -t [ --testonly ]
- Ignore label information and just test
- --loss_function arg (=squared)
- Specify the loss function to be used, uses squared by
default. Currently available ones are squared, classic, hinge, logistic
and quantile.
- --quantile_tau arg (=0.5)
- Parameter \tau associated with Quantile loss. Defaults to
0.5
- --unique_id arg (=0)
- unique id used for cluster parallel jobs
- --total arg (=1)
- total number of nodes used in cluster parallel job
- --node arg (=0)
- node number in cluster parallel job
- --sort_features
- turn this on to disregard order in which features have been
defined. This will lead to smaller cache sizes
- --ngram arg
- Generate N grams
- --skips arg
- Generate skips in N grams. This in conjunction with the
ngram tag can be used to generate generalized n-skip-k-gram.