table of contents
- NAME
- SYNOPSIS
- DESCRIPTION
- OPTIONS SUMMARY
- TARGET SPECIFICATION
- HOST DISCOVERY
- PORT SCANNING BASICS
- PORT SCANNING TECHNIQUES
- PORT SPECIFICATION AND SCAN ORDER
- SERVICE AND VERSION DETECTION
- OS DETECTION
- NMAP SCRIPTING ENGINE (NSE)
- TIMING AND PERFORMANCE
- FIREWALL/IDS EVASION AND SPOOFING
- OUTPUT
- MISCELLANEOUS OPTIONS
- RUNTIME INTERACTION
- EXAMPLES
- NMAP BOOK
- BUGS
- AUTHORS
- LEGAL NOTICES
- NOTES
- bookworm 7.93+dfsg1-1
- bookworm-backports 7.94+git20230807.3be01efb1+dfsg-1~bpo12+1
- testing 7.94+git20230807.3be01efb1+dfsg-4
- unstable 7.95+dfsg-1
NMAP(1) | Nmap Reference Guide | NMAP(1) |
NAME¶
nmap - Network exploration tool and security / port scanner
SYNOPSIS¶
nmap [Scan Type...] [Options] {target specification}
DESCRIPTION¶
Nmap (“Network Mapper”) is an open source tool for network exploration and security auditing. It was designed to rapidly scan large networks, although it works fine against single hosts. Nmap uses raw IP packets in novel ways to determine what hosts are available on the network, what services (application name and version) those hosts are offering, what operating systems (and OS versions) they are running, what type of packet filters/firewalls are in use, and dozens of other characteristics. While Nmap is commonly used for security audits, many systems and network administrators find it useful for routine tasks such as network inventory, managing service upgrade schedules, and monitoring host or service uptime.
The output from Nmap is a list of scanned targets, with supplemental information on each depending on the options used. Key among that information is the “interesting ports table”. That table lists the port number and protocol, service name, and state. The state is either open, filtered, closed, or unfiltered. Open means that an application on the target machine is listening for connections/packets on that port. Filtered means that a firewall, filter, or other network obstacle is blocking the port so that Nmap cannot tell whether it is open or closed. Closed ports have no application listening on them, though they could open up at any time. Ports are classified as unfiltered when they are responsive to Nmap's probes, but Nmap cannot determine whether they are open or closed. Nmap reports the state combinations open|filtered and closed|filtered when it cannot determine which of the two states describe a port. The port table may also include software version details when version detection has been requested. When an IP protocol scan is requested (-sO), Nmap provides information on supported IP protocols rather than listening ports.
In addition to the interesting ports table, Nmap can provide further information on targets, including reverse DNS names, operating system guesses, device types, and MAC addresses.
A typical Nmap scan is shown in Example 1. The only Nmap arguments used in this example are -A, to enable OS and version detection, script scanning, and traceroute; -T4 for faster execution; and then the hostname.
Example 1. A representative Nmap scan
# nmap -A -T4 scanme.nmap.org Nmap scan report for scanme.nmap.org (74.207.244.221) Host is up (0.029s latency). rDNS record for 74.207.244.221: li86-221.members.linode.com Not shown: 995 closed ports PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 5.3p1 Debian 3ubuntu7 (protocol 2.0) | ssh-hostkey: 1024 8d:60:f1:7c:ca:b7:3d:0a:d6:67:54:9d:69:d9:b9:dd (DSA) |_2048 79:f8:09:ac:d4:e2:32:42:10:49:d3:bd:20:82:85:ec (RSA) 80/tcp open http Apache httpd 2.2.14 ((Ubuntu)) |_http-title: Go ahead and ScanMe! 646/tcp filtered ldp 1720/tcp filtered H.323/Q.931 9929/tcp open nping-echo Nping echo Device type: general purpose Running: Linux 2.6.X OS CPE: cpe:/o:linux:linux_kernel:2.6.39 OS details: Linux 2.6.39 Network Distance: 11 hops Service Info: OS: Linux; CPE: cpe:/o:linux:kernel TRACEROUTE (using port 53/tcp) HOP RTT ADDRESS [Cut first 10 hops for brevity] 11 17.65 ms li86-221.members.linode.com (74.207.244.221) Nmap done: 1 IP address (1 host up) scanned in 14.40 seconds
The newest version of Nmap can be obtained from https://nmap.org. The newest version of this man page is available at https://nmap.org/book/man.html. It is also included as a chapter of Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning (see https://nmap.org/book/).
OPTIONS SUMMARY¶
This options summary is printed when Nmap is run with no arguments, and the latest version is always available at https://svn.nmap.org/nmap/docs/nmap.usage.txt. It helps people remember the most common options, but is no substitute for the in-depth documentation in the rest of this manual. Some obscure options aren't even included here.
Nmap 7.94 ( https://nmap.org ) Usage: nmap [Scan Type(s)] [Options] {target specification} TARGET SPECIFICATION:
Can pass hostnames, IP addresses, networks, etc.
Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
-iL <inputfilename>: Input from list of hosts/networks
-iR <num hosts>: Choose random targets
--exclude <host1[,host2][,host3],...>: Exclude hosts/networks
--excludefile <exclude_file>: Exclude list from file HOST DISCOVERY:
-sL: List Scan - simply list targets to scan
-sn: Ping Scan - disable port scan
-Pn: Treat all hosts as online -- skip host discovery
-PS/PA/PU/PY[portlist]: TCP SYN/ACK, UDP or SCTP discovery to given ports
-PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes
-PO[protocol list]: IP Protocol Ping
-n/-R: Never do DNS resolution/Always resolve [default: sometimes]
--dns-servers <serv1[,serv2],...>: Specify custom DNS servers
--system-dns: Use OS's DNS resolver
--traceroute: Trace hop path to each host SCAN TECHNIQUES:
-sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
-sU: UDP Scan
-sN/sF/sX: TCP Null, FIN, and Xmas scans
--scanflags <flags>: Customize TCP scan flags
-sI <zombie host[:probeport]>: Idle scan
-sY/sZ: SCTP INIT/COOKIE-ECHO scans
-sO: IP protocol scan
-b <FTP relay host>: FTP bounce scan PORT SPECIFICATION AND SCAN ORDER:
-p <port ranges>: Only scan specified ports
Ex: -p22; -p1-65535; -p U:53,111,137,T:21-25,80,139,8080,S:9
--exclude-ports <port ranges>: Exclude the specified ports from scanning
-F: Fast mode - Scan fewer ports than the default scan
-r: Scan ports sequentially - don't randomize
--top-ports <number>: Scan <number> most common ports
--port-ratio <ratio>: Scan ports more common than <ratio> SERVICE/VERSION DETECTION:
-sV: Probe open ports to determine service/version info
--version-intensity <level>: Set from 0 (light) to 9 (try all probes)
--version-light: Limit to most likely probes (intensity 2)
--version-all: Try every single probe (intensity 9)
--version-trace: Show detailed version scan activity (for debugging) SCRIPT SCAN:
-sC: equivalent to --script=default
--script=<Lua scripts>: <Lua scripts> is a comma separated list of
directories, script-files or script-categories
--script-args=<n1=v1,[n2=v2,...]>: provide arguments to scripts
--script-args-file=filename: provide NSE script args in a file
--script-trace: Show all data sent and received
--script-updatedb: Update the script database.
--script-help=<Lua scripts>: Show help about scripts.
<Lua scripts> is a comma-separated list of script-files or
script-categories. OS DETECTION:
-O: Enable OS detection
--osscan-limit: Limit OS detection to promising targets
--osscan-guess: Guess OS more aggressively TIMING AND PERFORMANCE:
Options which take <time> are in seconds, or append 'ms' (milliseconds),
's' (seconds), 'm' (minutes), or 'h' (hours) to the value (e.g. 30m).
-T<0-5>: Set timing template (higher is faster)
--min-hostgroup/max-hostgroup <size>: Parallel host scan group sizes
--min-parallelism/max-parallelism <numprobes>: Probe parallelization
--min-rtt-timeout/max-rtt-timeout/initial-rtt-timeout <time>: Specifies
probe round trip time.
--max-retries <tries>: Caps number of port scan probe retransmissions.
--host-timeout <time>: Give up on target after this long
--scan-delay/--max-scan-delay <time>: Adjust delay between probes
--min-rate <number>: Send packets no slower than <number> per second
--max-rate <number>: Send packets no faster than <number> per second FIREWALL/IDS EVASION AND SPOOFING:
-f; --mtu <val>: fragment packets (optionally w/given MTU)
-D <decoy1,decoy2[,ME],...>: Cloak a scan with decoys
-S <IP_Address>: Spoof source address
-e <iface>: Use specified interface
-g/--source-port <portnum>: Use given port number
--proxies <url1,[url2],...>: Relay connections through HTTP/SOCKS4 proxies
--data <hex string>: Append a custom payload to sent packets
--data-string <string>: Append a custom ASCII string to sent packets
--data-length <num>: Append random data to sent packets
--ip-options <options>: Send packets with specified ip options
--ttl <val>: Set IP time-to-live field
--spoof-mac <mac address/prefix/vendor name>: Spoof your MAC address
--badsum: Send packets with a bogus TCP/UDP/SCTP checksum OUTPUT:
-oN/-oX/-oS/-oG <file>: Output scan in normal, XML, s|<rIpt kIddi3,
and Grepable format, respectively, to the given filename.
-oA <basename>: Output in the three major formats at once
-v: Increase verbosity level (use -vv or more for greater effect)
-d: Increase debugging level (use -dd or more for greater effect)
--reason: Display the reason a port is in a particular state
--open: Only show open (or possibly open) ports
--packet-trace: Show all packets sent and received
--iflist: Print host interfaces and routes (for debugging)
--append-output: Append to rather than clobber specified output files
--resume <filename>: Resume an aborted scan
--noninteractive: Disable runtime interactions via keyboard
--stylesheet <path/URL>: XSL stylesheet to transform XML output to HTML
--webxml: Reference stylesheet from Nmap.Org for more portable XML
--no-stylesheet: Prevent associating of XSL stylesheet w/XML output MISC:
-6: Enable IPv6 scanning
-A: Enable OS detection, version detection, script scanning, and traceroute
--datadir <dirname>: Specify custom Nmap data file location
--send-eth/--send-ip: Send using raw ethernet frames or IP packets
--privileged: Assume that the user is fully privileged
--unprivileged: Assume the user lacks raw socket privileges
-V: Print version number
-h: Print this help summary page. EXAMPLES:
nmap -v -A scanme.nmap.org
nmap -v -sn 192.168.0.0/16 10.0.0.0/8
nmap -v -iR 10000 -Pn -p 80 SEE THE MAN PAGE (https://nmap.org/book/man.html) FOR MORE OPTIONS AND EXAMPLES
TARGET SPECIFICATION¶
Everything on the Nmap command-line that isn't an option (or option argument) is treated as a target host specification. The simplest case is to specify a target IP address or hostname for scanning.
When a hostname is given as a target, it is resolved via the Domain Name System (DNS) to determine the IP address to scan. If the name resolves to more than one IP address, only the first one will be scanned. To make Nmap scan all the resolved addresses instead of only the first one, use the --resolve-all option.
Sometimes you wish to scan a whole network of adjacent hosts. For this, Nmap supports CIDR-style addressing. You can append /numbits to an IP address or hostname and Nmap will scan every IP address for which the first numbits are the same as for the reference IP or hostname given. For example, 192.168.10.0/24 would scan the 256 hosts between 192.168.10.0 (binary: 11000000 10101000 00001010 00000000) and 192.168.10.255 (binary: 11000000 10101000 00001010 11111111), inclusive. 192.168.10.40/24 would scan exactly the same targets. Given that the host scanme.nmap.org is at the IP address 64.13.134.52, the specification scanme.nmap.org/16 would scan the 65,536 IP addresses between 64.13.0.0 and 64.13.255.255. The smallest allowed value is /0, which targets the whole Internet. The largest value for IPv4 is /32, which scans just the named host or IP address because all address bits are fixed. The largest value for IPv6 is /128, which does the same thing.
CIDR notation is short but not always flexible enough. For example, you might want to scan 192.168.0.0/16 but skip any IPs ending with .0 or .255 because they may be used as subnet network and broadcast addresses. Nmap supports this through octet range addressing. Rather than specify a normal IP address, you can specify a comma-separated list of numbers or ranges for each octet. For example, 192.168.0-255.1-254 will skip all addresses in the range that end in .0 or .255, and 192.168.3-5,7.1 will scan the four addresses 192.168.3.1, 192.168.4.1, 192.168.5.1, and 192.168.7.1. Either side of a range may be omitted; the default values are 0 on the left and 255 on the right. Using - by itself is the same as 0-255, but remember to use 0- in the first octet so the target specification doesn't look like a command-line option. Ranges need not be limited to the final octets: the specifier 0-255.0-255.13.37 will perform an Internet-wide scan for all IP addresses ending in 13.37. This sort of broad sampling can be useful for Internet surveys and research.
IPv6 addresses can be specified by their fully qualified IPv6 address or hostname or with CIDR notation for subnets. Octet ranges aren't yet supported for IPv6.
IPv6 addresses with non-global scope need to have a zone ID suffix. On Unix systems, this is a percent sign followed by an interface name; a complete address might be fe80::a8bb:ccff:fedd:eeff%eth0. On Windows, use an interface index number in place of an interface name: fe80::a8bb:ccff:fedd:eeff%1. You can see a list of interface indexes by running the command netsh.exe interface ipv6 show interface.
Nmap accepts multiple host specifications on the command line, and they don't need to be the same type. The command nmap scanme.nmap.org 192.168.0.0/8 10.0.0,1,3-7.- does what you would expect.
While targets are usually specified on the command lines, the following options are also available to control target selection:
-iL inputfilename (Input from list)
The input file may contain comments that start with # and extend to the end of the line.
-iR num hosts (Choose random targets)
--exclude host1[,host2[,...]] (Exclude hosts/networks)
--excludefile exclude_file (Exclude list from file)
The exclude file may contain comments that start with # and extend to the end of the line.
-n (No DNS resolution)
Tells Nmap to never do reverse DNS resolution on the active IP addresses it finds. Since DNS can be slow even with Nmap's built-in parallel stub resolver, this option can slash scanning times.
-R (DNS resolution for all targets)
--resolve-all (Scan each resolved address)
--unique (Scan each address only once)
--system-dns (Use system DNS resolver)
--dns-servers server1[,server2[,...]] (Servers to use for reverse DNS queries)
This option also comes in handy when scanning private networks. Sometimes only a few name servers provide proper rDNS information, and you may not even know where they are. You can scan the network for port 53 (perhaps with version detection), then try Nmap list scans (-sL) specifying each name server one at a time with --dns-servers until you find one which works.
This option might not be honored if the DNS response exceeds the size of a UDP packet. In such a situation our DNS resolver will make the best effort to extract a response from the truncated packet, and if not successful it will fall back to using the system resolver. Also, responses that contain CNAME aliases will fall back to the system resolver.
HOST DISCOVERY¶
One of the very first steps in any network reconnaissance mission is to reduce a (sometimes huge) set of IP ranges into a list of active or interesting hosts. Scanning every port of every single IP address is slow and usually unnecessary. Of course what makes a host interesting depends greatly on the scan purposes. Network administrators may only be interested in hosts running a certain service, while security auditors may care about every single device with an IP address. An administrator may be comfortable using just an ICMP ping to locate hosts on his internal network, while an external penetration tester may use a diverse set of dozens of probes in an attempt to evade firewall restrictions.
Because host discovery needs are so diverse, Nmap offers a wide variety of options for customizing the techniques used. Host discovery is sometimes called ping scan, but it goes well beyond the simple ICMP echo request packets associated with the ubiquitous ping tool. Users can skip the discovery step entirely with a list scan (-sL) or by disabling host discovery (-Pn), or engage the network with arbitrary combinations of multi-port TCP SYN/ACK, UDP, SCTP INIT and ICMP probes. The goal of these probes is to solicit responses which demonstrate that an IP address is actually active (is being used by a host or network device). On many networks, only a small percentage of IP addresses are active at any given time. This is particularly common with private address space such as 10.0.0.0/8. That network has 16 million IPs, but I have seen it used by companies with less than a thousand machines. Host discovery can find those machines in a sparsely allocated sea of IP addresses.
If no host discovery options are given, Nmap sends an ICMP echo request, a TCP SYN packet to port 443, a TCP ACK packet to port 80, and an ICMP timestamp request. (For IPv6, the ICMP timestamp request is omitted because it is not part of ICMPv6.) These defaults are equivalent to the -PE -PS443 -PA80 -PP options. The exceptions to this are the ARP (for IPv4) and Neighbor Discovery (for IPv6) scans which are used for any targets on a local ethernet network. For unprivileged Unix shell users, the default probes are a SYN packet to ports 80 and 443 using the connect system call. This host discovery is often sufficient when scanning local networks, but a more comprehensive set of discovery probes is recommended for security auditing.
The -P* options (which select ping types) can be combined. You can increase your odds of penetrating strict firewalls by sending many probe types using different TCP ports/flags and ICMP codes. Also note that ARP/Neighbor Discovery is done by default against targets on a local Ethernet network even if you specify other -P* options, because it is almost always faster and more effective.
By default, Nmap does host discovery and then performs a port scan against each host it determines is online. This is true even if you specify non-default host discovery types such as UDP probes (-PU). Read about the -sn option to learn how to perform only host discovery, or use -Pn to skip host discovery and port scan all target addresses. The following options control host discovery:
-sL (List Scan)
Nmap also reports the total number of IP addresses at the end. The list scan is a good sanity check to ensure that you have proper IP addresses for your targets. If the hosts sport domain names you do not recognize, it is worth investigating further to prevent scanning the wrong company's network.
Since the idea is to simply print a list of target hosts, options for higher level functionality such as port scanning, OS detection, or host discovery cannot be combined with this. If you wish to disable host discovery while still performing such higher level functionality, read up on the -Pn (skip host discovery) option.
-sn (No port scan)
Systems administrators often find this option valuable as well. It can easily be used to count available machines on a network or monitor server availability. This is often called a ping sweep, and is more reliable than pinging the broadcast address because many hosts do not reply to broadcast queries.
The default host discovery done with -sn consists of an ICMP echo request, TCP SYN to port 443, TCP ACK to port 80, and an ICMP timestamp request by default. When executed by an unprivileged user, only SYN packets are sent (using a connect call) to ports 80 and 443 on the target. When a privileged user tries to scan targets on a local ethernet network, ARP requests are used unless --send-ip was specified. The -sn option can be combined with any of the discovery probe types (the -P* options) for greater flexibility. If any of those probe type and port number options are used, the default probes are overridden. When strict firewalls are in place between the source host running Nmap and the target network, using those advanced techniques is recommended. Otherwise hosts could be missed when the firewall drops probes or their responses.
In previous releases of Nmap, -sn was known as -sP.
-Pn (No ping)
For machines on a local ethernet network, ARP scanning will still be performed (unless --disable-arp-ping or --send-ip is specified) because Nmap needs MAC addresses to further scan target hosts. In previous versions of Nmap, -Pn was -P0 and -PN.
-PS port list (TCP SYN Ping)
The SYN flag suggests to the remote system that you are attempting to establish a connection. Normally the destination port will be closed, and a RST (reset) packet sent back. If the port happens to be open, the target will take the second step of a TCP three-way-handshake by responding with a SYN/ACK TCP packet. The machine running Nmap then tears down the nascent connection by responding with a RST rather than sending an ACK packet which would complete the three-way-handshake and establish a full connection. The RST packet is sent by the kernel of the machine running Nmap in response to the unexpected SYN/ACK, not by Nmap itself.
Nmap does not care whether the port is open or closed. Either the RST or SYN/ACK response discussed previously tell Nmap that the host is available and responsive.
On Unix boxes, only the privileged user root is generally able to send and receive raw TCP packets. For unprivileged users, a workaround is automatically employed whereby the connect system call is initiated against each target port. This has the effect of sending a SYN packet to the target host, in an attempt to establish a connection. If connect returns with a quick success or an ECONNREFUSED failure, the underlying TCP stack must have received a SYN/ACK or RST and the host is marked available. If the connection attempt is left hanging until a timeout is reached, the host is marked as down.
-PA port list (TCP ACK Ping)
The -PA option uses the same default port as the SYN probe (80) and can also take a list of destination ports in the same format. If an unprivileged user tries this, the connect workaround discussed previously is used. This workaround is imperfect because connect is actually sending a SYN packet rather than an ACK.
The reason for offering both SYN and ACK ping probes is to maximize the chances of bypassing firewalls. Many administrators configure routers and other simple firewalls to block incoming SYN packets except for those destined for public services like the company web site or mail server. This prevents other incoming connections to the organization, while allowing users to make unobstructed outgoing connections to the Internet. This non-stateful approach takes up few resources on the firewall/router and is widely supported by hardware and software filters. The Linux Netfilter/iptables firewall software offers the --syn convenience option to implement this stateless approach. When stateless firewall rules such as this are in place, SYN ping probes (-PS) are likely to be blocked when sent to closed target ports. In such cases, the ACK probe shines as it cuts right through these rules.
Another common type of firewall uses stateful rules that drop unexpected packets. This feature was initially found mostly on high-end firewalls, though it has become much more common over the years. The Linux Netfilter/iptables system supports this through the --state option, which categorizes packets based on connection state. A SYN probe is more likely to work against such a system, as unexpected ACK packets are generally recognized as bogus and dropped. A solution to this quandary is to send both SYN and ACK probes by specifying -PS and -PA.
-PU port list (UDP Ping)
The payloads are the same probes used in service and version detection and are defined in the nmap-service-probes
file. Packet content can also be affected with the --data, --data-string, and --data-length options.
The port list takes the same format as with the previously discussed -PS and -PA options. If no ports are specified, the default is 40125. This default can be configured at compile-time by changing DEFAULT_UDP_PROBE_PORT_SPEC in nmap.h. A highly uncommon port is used by default because sending to open ports is often undesirable for this particular scan type.
Upon hitting a closed port on the target machine, the UDP probe should elicit an ICMP port unreachable packet in return. This signifies to Nmap that the machine is up and available. Many other types of ICMP errors, such as host/network unreachables or TTL exceeded are indicative of a down or unreachable host. A lack of response is also interpreted this way. If an open port is reached, most services simply ignore the empty packet and fail to return any response. This is why the default probe port is 40125, which is highly unlikely to be in use. A few services, such as the Character Generator (chargen) protocol, will respond to an empty UDP packet, and thus disclose to Nmap that the machine is available.
The primary advantage of this scan type is that it bypasses firewalls and filters that only screen TCP. For example, I once owned a Linksys BEFW11S4 wireless broadband router. The external interface of this device filtered all TCP ports by default, but UDP probes would still elicit port unreachable messages and thus give away the device.
-PY port list (SCTP INIT Ping)
The INIT chunk suggests to the remote system that you are attempting to establish an association. Normally the destination port will be closed, and an ABORT chunk will be sent back. If the port happens to be open, the target will take the second step of an SCTP four-way-handshake by responding with an INIT-ACK chunk. If the machine running Nmap has a functional SCTP stack, then it tears down the nascent association by responding with an ABORT chunk rather than sending a COOKIE-ECHO chunk which would be the next step in the four-way-handshake. The ABORT packet is sent by the kernel of the machine running Nmap in response to the unexpected INIT-ACK, not by Nmap itself.
Nmap does not care whether the port is open or closed. Either the ABORT or INIT-ACK response discussed previously tell Nmap that the host is available and responsive.
On Unix boxes, only the privileged user root is generally able to send and receive raw SCTP packets. Using SCTP INIT Pings is currently not possible for unprivileged users.
-PE; -PP; -PM (ICMP Ping Types)
While echo request is the standard ICMP ping query, Nmap does not stop there. The ICMP standards (RFC 792[3] and RFC 950[4] ) also specify timestamp request, information request, and address mask request packets as codes 13, 15, and 17, respectively. While the ostensible purpose for these queries is to learn information such as address masks and current times, they can easily be used for host discovery. A system that replies is up and available. Nmap does not currently implement information request packets, as they are not widely supported. RFC 1122 insists that “a host SHOULD NOT implement these messages”. Timestamp and address mask queries can be sent with the -PP and -PM options, respectively. A timestamp reply (ICMP code 14) or address mask reply (code 18) discloses that the host is available. These two queries can be valuable when administrators specifically block echo request packets while forgetting that other ICMP queries can be used for the same purpose.
-PO protocol list (IP Protocol Ping)
This host discovery method looks for either responses using the same protocol as a probe, or ICMP protocol unreachable messages which signify that the given protocol isn't supported on the destination host. Either type of response signifies that the target host is alive.
--disable-arp-ping (No ARP or ND Ping)
The default behavior is normally faster, but this option is useful on networks using proxy ARP, in which a router speculatively replies to all ARP requests, making every target appear to be up according to ARP scan.
--discovery-ignore-rst
--traceroute (Trace path to host)
Traceroute works by sending packets with a low TTL (time-to-live) in an attempt to elicit ICMP Time Exceeded messages from intermediate hops between the scanner and the target host. Standard traceroute implementations start with a TTL of 1 and increment the TTL until the destination host is reached. Nmap's traceroute starts with a high TTL and then decrements the TTL until it reaches zero. Doing it backwards lets Nmap employ clever caching algorithms to speed up traces over multiple hosts. On average Nmap sends 5–10 fewer packets per host, depending on network conditions. If a single subnet is being scanned (i.e. 192.168.0.0/24) Nmap may only have to send two packets to most hosts.
PORT SCANNING BASICS¶
While Nmap has grown in functionality over the years, it began as an efficient port scanner, and that remains its core function. The simple command nmap target scans 1,000 TCP ports on the host target. While many port scanners have traditionally lumped all ports into the open or closed states, Nmap is much more granular. It divides ports into six states: open, closed, filtered, unfiltered, open|filtered, or closed|filtered.
These states are not intrinsic properties of the port itself, but describe how Nmap sees them. For example, an Nmap scan from the same network as the target may show port 135/tcp as open, while a scan at the same time with the same options from across the Internet might show that port as filtered.
The six port states recognized by Nmap
open
closed
filtered
unfiltered
open|filtered
closed|filtered
PORT SCANNING TECHNIQUES¶
As a novice performing automotive repair, I can struggle for hours trying to fit my rudimentary tools (hammer, duct tape, wrench, etc.) to the task at hand. When I fail miserably and tow my jalopy to a real mechanic, he invariably fishes around in a huge tool chest until pulling out the perfect gizmo which makes the job seem effortless. The art of port scanning is similar. Experts understand the dozens of scan techniques and choose the appropriate one (or combination) for a given task. Inexperienced users and script kiddies, on the other hand, try to solve every problem with the default SYN scan. Since Nmap is free, the only barrier to port scanning mastery is knowledge. That certainly beats the automotive world, where it may take great skill to determine that you need a strut spring compressor, then you still have to pay thousands of dollars for it.
Most of the scan types are only available to privileged users. This is because they send and receive raw packets, which requires root access on Unix systems. Using an administrator account on Windows is recommended, though Nmap sometimes works for unprivileged users on that platform when Npcap has already been loaded into the OS. Requiring root privileges was a serious limitation when Nmap was released in 1997, as many users only had access to shared shell accounts. Now, the world is different. Computers are cheaper, far more people have always-on direct Internet access, and desktop Unix systems (including Linux and Mac OS X) are prevalent. A Windows version of Nmap is now available, allowing it to run on even more desktops. For all these reasons, users have less need to run Nmap from limited shared shell accounts. This is fortunate, as the privileged options make Nmap far more powerful and flexible.
While Nmap attempts to produce accurate results, keep in mind that all of its insights are based on packets returned by the target machines (or firewalls in front of them). Such hosts may be untrustworthy and send responses intended to confuse or mislead Nmap. Much more common are non-RFC-compliant hosts that do not respond as they should to Nmap probes. FIN, NULL, and Xmas scans are particularly susceptible to this problem. Such issues are specific to certain scan types and so are discussed in the individual scan type entries.
This section documents the dozen or so port scan techniques supported by Nmap. Only one method may be used at a time, except that UDP scan (-sU) and any one of the SCTP scan types (-sY, -sZ) may be combined with any one of the TCP scan types. As a memory aid, port scan type options are of the form -sC, where C is a prominent character in the scan name, usually the first. The one exception to this is the deprecated FTP bounce scan (-b). By default, Nmap performs a SYN Scan, though it substitutes a connect scan if the user does not have proper privileges to send raw packets (requires root access on Unix). Of the scans listed in this section, unprivileged users can only execute connect and FTP bounce scans.
-sS (TCP SYN scan)
This technique is often referred to as half-open scanning, because you don't open a full TCP connection. You send a SYN packet, as if you are going to open a real connection and then wait for a response. A SYN/ACK indicates the port is listening (open), while a RST (reset) is indicative of a non-listener. If no response is received after several retransmissions, the port is marked as filtered. The port is also marked filtered if an ICMP unreachable error (type 3, code 0, 1, 2, 3, 9, 10, or 13) is received. The port is also considered open if a SYN packet (without the ACK flag) is received in response. This can be due to an extremely rare TCP feature known as a simultaneous open or split handshake connection (see https://nmap.org/misc/split-handshake.pdf).
-sT (TCP connect scan)
When SYN scan is available, it is usually a better choice. Nmap has less control over the high level connect call than with raw packets, making it less efficient. The system call completes connections to open target ports rather than performing the half-open reset that SYN scan does. Not only does this take longer and require more packets to obtain the same information, but target machines are more likely to log the connection. A decent IDS will catch either, but most machines have no such alarm system. Many services on your average Unix system will add a note to syslog, and sometimes a cryptic error message, when Nmap connects and then closes the connection without sending data. Truly pathetic services crash when this happens, though that is uncommon. An administrator who sees a bunch of connection attempts in her logs from a single system should know that she has been connect scanned.
-sU (UDP scans)
UDP scan is activated with the -sU option. It can be combined with a TCP scan type such as SYN scan (-sS) to check both protocols during the same run.
UDP scan works by sending a UDP packet to every targeted port. For some common ports such as 53 and 161, a protocol-specific payload is sent to increase response rate, but for most ports the packet is empty unless the --data, --data-string, or --data-length options are specified. If an ICMP port unreachable error (type 3, code 3) is returned, the port is closed. Other ICMP unreachable errors (type 3, codes 0, 1, 2, 9, 10, or 13) mark the port as filtered. Occasionally, a service will respond with a UDP packet, proving that it is open. If no response is received after retransmissions, the port is classified as open|filtered. This means that the port could be open, or perhaps packet filters are blocking the communication. Version detection (-sV) can be used to help differentiate the truly open ports from the filtered ones.
A big challenge with UDP scanning is doing it quickly. Open and filtered ports rarely send any response, leaving Nmap to time out and then conduct retransmissions just in case the probe or response were lost. Closed ports are often an even bigger problem. They usually send back an ICMP port unreachable error. But unlike the RST packets sent by closed TCP ports in response to a SYN or connect scan, many hosts rate limit ICMP port unreachable messages by default. Linux and Solaris are particularly strict about this. For example, the Linux 2.4.20 kernel limits destination unreachable messages to one per second (in net/ipv4/icmp.c).
Nmap detects rate limiting and slows down accordingly to avoid flooding the network with useless packets that the target machine will drop. Unfortunately, a Linux-style limit of one packet per second makes a 65,536-port scan take more than 18 hours. Ideas for speeding your UDP scans up include scanning more hosts in parallel, doing a quick scan of just the popular ports first, scanning from behind the firewall, and using --host-timeout to skip slow hosts.
-sY (SCTP INIT scan)
This technique is often referred to as half-open scanning, because you don't open a full SCTP association. You send an INIT chunk, as if you are going to open a real association and then wait for a response. An INIT-ACK chunk indicates the port is listening (open), while an ABORT chunk is indicative of a non-listener. If no response is received after several retransmissions, the port is marked as filtered. The port is also marked filtered if an ICMP unreachable error (type 3, code 0, 1, 2, 3, 9, 10, or 13) is received.
-sN; -sF; -sX (TCP NULL, FIN, and Xmas scans)
When scanning systems compliant with this RFC text, any packet not containing SYN, RST, or ACK bits will result in a returned RST if the port is closed and no response at all if the port is open. As long as none of those three bits are included, any combination of the other three (FIN, PSH, and URG) are OK. Nmap exploits this with three scan types:
Null scan (-sN)
FIN scan (-sF)
Xmas scan (-sX)
These three scan types are exactly the same in behavior except for the TCP flags set in probe packets. If a RST packet is received, the port is considered closed, while no response means it is open|filtered. The port is marked filtered if an ICMP unreachable error (type 3, code 0, 1, 2, 3, 9, 10, or 13) is received.
The key advantage to these scan types is that they can sneak through certain non-stateful firewalls and packet filtering routers. Another advantage is that these scan types are a little more stealthy than even a SYN scan. Don't count on this though—most modern IDS products can be configured to detect them. The big downside is that not all systems follow RFC 793 to the letter. A number of systems send RST responses to the probes regardless of whether the port is open or not. This causes all of the ports to be labeled closed. Major operating systems that do this are Microsoft Windows, many Cisco devices, BSDI, and IBM OS/400. This scan does work against most Unix-based systems though. Another downside of these scans is that they can't distinguish open ports from certain filtered ones, leaving you with the response open|filtered.
-sA (TCP ACK scan)
The ACK scan probe packet has only the ACK flag set (unless you use --scanflags). When scanning unfiltered systems, open and closed ports will both return a RST packet. Nmap then labels them as unfiltered, meaning that they are reachable by the ACK packet, but whether they are open or closed is undetermined. Ports that don't respond, or send certain ICMP error messages back (type 3, code 0, 1, 2, 3, 9, 10, or 13), are labeled filtered.
-sW (TCP Window scan)
This scan relies on an implementation detail of a minority of systems out on the Internet, so you can't always trust it. Systems that don't support it will usually return all ports closed. Of course, it is possible that the machine really has no open ports. If most scanned ports are closed but a few common port numbers (such as 22, 25, 53) are filtered, the system is most likely susceptible. Occasionally, systems will even show the exact opposite behavior. If your scan shows 1,000 open ports and three closed or filtered ports, then those three may very well be the truly open ones.
-sM (TCP Maimon scan)
--scanflags (Custom TCP scan)
The --scanflags argument can be a numerical flag value such as 9 (PSH and FIN), but using symbolic names is easier. Just mash together any combination of URG, ACK, PSH, RST, SYN, and FIN. For example, --scanflags URGACKPSHRSTSYNFIN sets everything, though it's not very useful for scanning. The order these are specified in is irrelevant.
In addition to specifying the desired flags, you can specify a TCP scan type (such as -sA or -sF). That base type tells Nmap how to interpret responses. For example, a SYN scan considers no-response to indicate a filtered port, while a FIN scan treats the same as open|filtered. Nmap will behave the same way it does for the base scan type, except that it will use the TCP flags you specify instead. If you don't specify a base type, SYN scan is used.
-sZ (SCTP COOKIE ECHO scan)
-sI zombie host[:probeport] (idle scan)
Besides being extraordinarily stealthy (due to its blind nature), this scan type permits mapping out IP-based trust relationships between machines. The port listing shows open ports from the perspective of the zombie host. So you can try scanning a target using various zombies that you think might be trusted (via router/packet filter rules).
You can add a colon followed by a port number to the zombie host if you wish to probe a particular port on the zombie for IP ID changes. Otherwise Nmap will use the port it uses by default for TCP pings (80).
-sO (IP protocol scan)
Besides being useful in its own right, protocol scan demonstrates the power of open-source software. While the fundamental idea is pretty simple, I had not thought to add it nor received any requests for such functionality. Then in the summer of 2000, Gerhard Rieger conceived the idea, wrote an excellent patch implementing it, and sent it to the announce mailing list (then called nmap-hackers). I incorporated that patch into the Nmap tree and released a new version the next day. Few pieces of commercial software have users enthusiastic enough to design and contribute their own improvements!
Protocol scan works in a similar fashion to UDP scan. Instead of iterating through the port number field of a UDP packet, it sends IP packet headers and iterates through the eight-bit IP protocol field. The headers are usually empty, containing no data and not even the proper header for the claimed protocol. The exceptions are TCP, UDP, ICMP, SCTP, and IGMP. A proper protocol header for those is included since some systems won't send them otherwise and because Nmap already has functions to create them. Instead of watching for ICMP port unreachable messages, protocol scan is on the lookout for ICMP protocol unreachable messages. If Nmap receives any response in any protocol from the target host, Nmap marks that protocol as open. An ICMP protocol unreachable error (type 3, code 2) causes the protocol to be marked as closed while port unreachable (type 3, code 3) marks the protocol open. Other ICMP unreachable errors (type 3, code 0, 1, 9, 10, or 13) cause the protocol to be marked filtered (though they prove that ICMP is open at the same time). If no response is received after retransmissions, the protocol is marked open|filtered
-b FTP relay host (FTP bounce scan)
This vulnerability was widespread in 1997 when Nmap was released, but has largely been fixed. Vulnerable servers are still around, so it is worth trying when all else fails. If bypassing a firewall is your goal, scan the target network for port 21 (or even for any FTP services if you scan all ports with version detection) and use the ftp-bounce NSE script. Nmap will tell you whether the host is vulnerable or not. If you are just trying to cover your tracks, you don't need to (and, in fact, shouldn't) limit yourself to hosts on the target network. Before you go scanning random Internet addresses for vulnerable FTP servers, consider that sysadmins may not appreciate you abusing their servers in this way.
PORT SPECIFICATION AND SCAN ORDER¶
In addition to all of the scan methods discussed previously, Nmap offers options for specifying which ports are scanned and whether the scan order is randomized or sequential. By default, Nmap scans the most common 1,000 ports for each protocol.
-p port ranges (Only scan specified ports)
When scanning a combination of protocols (e.g. TCP and UDP), you can specify a particular protocol by preceding the port numbers by T: for TCP, U: for UDP, S: for SCTP, or P: for IP Protocol. The qualifier lasts until you specify another qualifier. For example, the argument -p U:53,111,137,T:21-25,80,139,8080 would scan UDP ports 53, 111,and 137, as well as the listed TCP ports. Note that to scan both UDP and TCP, you have to specify -sU and at least one TCP scan type (such as -sS, -sF, or -sT). If no protocol qualifier is given, the port numbers are added to all protocol lists. Ports can also be specified by name according to what the port is referred to in the nmap-services. You can even use the wildcards * and ? with the names. For example, to scan FTP and all ports whose names begin with “http”, use -p ftp,http*. Be careful about shell expansions and quote the argument to -p if unsure.
Ranges of ports can be surrounded by square brackets to indicate ports inside that range that appear in nmap-services. For example, the following will scan all ports in nmap-services equal to or below 1024: -p [-1024]. Be careful with shell expansions and quote the argument to -p if unsure.
--exclude-ports port ranges (Exclude the specified ports from scanning)
When ports are asked to be excluded, they are excluded from all types of scans (i.e. they will not be scanned under any circumstances). This also includes the discovery phase.
-F (Fast (limited port) scan)
Nmap needs an nmap-services file with frequency information in order to know which ports are the most common. If port frequency information isn't available, perhaps because of the use of a custom nmap-services file, Nmap scans all named ports plus ports 1-1024. In that case, -F means to scan only ports that are named in the services file.
-r (Don't randomize ports)
--port-ratio ratio<decimal number between 0 and 1>
--top-ports n
SERVICE AND VERSION DETECTION¶
Point Nmap at a remote machine and it might tell you that ports 25/tcp, 80/tcp, and 53/udp are open. Using its nmap-services database of about 2,200 well-known services, Nmap would report that those ports probably correspond to a mail server (SMTP), web server (HTTP), and name server (DNS) respectively. This lookup is usually accurate—the vast majority of daemons listening on TCP port 25 are, in fact, mail servers. However, you should not bet your security on this! People can and do run services on strange ports.
Even if Nmap is right, and the hypothetical server above is running SMTP, HTTP, and DNS servers, that is not a lot of information. When doing vulnerability assessments (or even simple network inventories) of your companies or clients, you really want to know which mail and DNS servers and versions are running. Having an accurate version number helps dramatically in determining which exploits a server is vulnerable to. Version detection helps you obtain this information.
After TCP and/or UDP ports are discovered using one of the other scan methods, version detection interrogates those ports to determine more about what is actually running. The nmap-service-probes database contains probes for querying various services and match expressions to recognize and parse responses. Nmap tries to determine the service protocol (e.g. FTP, SSH, Telnet, HTTP), the application name (e.g. ISC BIND, Apache httpd, Solaris telnetd), the version number, hostname, device type (e.g. printer, router), the OS family (e.g. Windows, Linux). When possible, Nmap also gets the Common Platform Enumeration (CPE) representation of this information. Sometimes miscellaneous details like whether an X server is open to connections, the SSH protocol version, or the KaZaA user name, are available. Of course, most services don't provide all of this information. If Nmap was compiled with OpenSSL support, it will connect to SSL servers to deduce the service listening behind that encryption layer. Some UDP ports are left in the open|filtered state after a UDP port scan is unable to determine whether the port is open or filtered. Version detection will try to elicit a response from these ports (just as it does with open ports), and change the state to open if it succeeds. open|filtered TCP ports are treated the same way. Note that the Nmap -A option enables version detection among other things. A paper documenting the workings, usage, and customization of version detection is available at https://nmap.org/book/vscan.html.
When RPC services are discovered, the Nmap RPC grinder is automatically used to determine the RPC program and version numbers. It takes all the TCP/UDP ports detected as RPC and floods them with SunRPC program NULL commands in an attempt to determine whether they are RPC ports, and if so, what program and version number they serve up. Thus you can effectively obtain the same info as rpcinfo -p even if the target's portmapper is behind a firewall (or protected by TCP wrappers). Decoys do not currently work with RPC scan.
When Nmap receives responses from a service but cannot match them to its database, it prints out a special fingerprint and a URL for you to submit it to if you know for sure what is running on the port. Please take a couple minutes to make the submission so that your find can benefit everyone. Thanks to these submissions, Nmap has about 6,500 pattern matches for more than 650 protocols such as SMTP, FTP, HTTP, etc.
Version detection is enabled and controlled with the following options:
-sV (Version detection)
-sR is an alias for -sV. Prior to March 2011, it was used to active the RPC grinder separately from version detection, but now these options are always combined.
--allports (Don't exclude any ports from version detection)
--version-intensity intensity (Set version scan intensity)
--version-light (Enable light mode)
--version-all (Try every single probe)
--version-trace (Trace version scan activity)
OS DETECTION¶
One of Nmap's best-known features is remote OS detection using TCP/IP stack fingerprinting. Nmap sends a series of TCP and UDP packets to the remote host and examines practically every bit in the responses. After performing dozens of tests such as TCP ISN sampling, TCP options support and ordering, IP ID sampling, and the initial window size check, Nmap compares the results to its nmap-os-db database of more than 2,600 known OS fingerprints and prints out the OS details if there is a match. Each fingerprint includes a freeform textual description of the OS, and a classification which provides the vendor name (e.g. Sun), underlying OS (e.g. Solaris), OS generation (e.g. 10), and device type (general purpose, router, switch, game console, etc). Most fingerprints also have a Common Platform Enumeration (CPE) representation, like cpe:/o:linux:linux_kernel:2.6.
If Nmap is unable to guess the OS of a machine, and conditions are good (e.g. at least one open port and one closed port were found), Nmap will provide a URL you can use to submit the fingerprint if you know (for sure) the OS running on the machine. By doing this you contribute to the pool of operating systems known to Nmap and thus it will be more accurate for everyone.
OS detection enables some other tests which make use of information that is gathered during the process anyway. One of these is TCP Sequence Predictability Classification. This measures approximately how hard it is to establish a forged TCP connection against the remote host. It is useful for exploiting source-IP based trust relationships (rlogin, firewall filters, etc) or for hiding the source of an attack. This sort of spoofing is rarely performed any more, but many machines are still vulnerable to it. The actual difficulty number is based on statistical sampling and may fluctuate. It is generally better to use the English classification such as “worthy challenge” or “trivial joke”. This is only reported in normal output in verbose (-v) mode. When verbose mode is enabled along with -O, IP ID sequence generation is also reported. Most machines are in the “incremental” class, which means that they increment the ID field in the IP header for each packet they send. This makes them vulnerable to several advanced information gathering and spoofing attacks.
Another bit of extra information enabled by OS detection is a guess at a target's uptime. This uses the TCP timestamp option (RFC 1323[9]) to guess when a machine was last rebooted. The guess can be inaccurate due to the timestamp counter not being initialized to zero or the counter overflowing and wrapping around, so it is printed only in verbose mode.
A paper documenting the workings, usage, and customization of OS detection is available at https://nmap.org/book/osdetect.html.
OS detection is enabled and controlled with the following options:
-O (Enable OS detection)
--osscan-limit (Limit OS detection to promising targets)
--osscan-guess; --fuzzy (Guess OS detection results)
--max-os-tries (Set the maximum number of OS detection tries against a target)
NMAP SCRIPTING ENGINE (NSE)¶
The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and flexible features. It allows users to write (and share) simple scripts (using the Lua programming language[10]
) to automate a wide variety of networking tasks. Those scripts are executed in parallel with the speed and efficiency you expect from Nmap. Users can rely on the growing and diverse set of scripts distributed with Nmap, or write their own to meet custom needs.
Tasks we had in mind when creating the system include network discovery, more sophisticated version detection, vulnerability detection. NSE can even be used for vulnerability exploitation.
To reflect those different uses and to simplify the choice of which scripts to run, each script contains a field associating it with one or more categories. Currently defined categories are auth, broadcast, default. discovery, dos, exploit, external, fuzzer, intrusive, malware, safe, version, and vuln. These are all described at https://nmap.org/book/nse-usage.html#nse-categories.
Scripts are not run in a sandbox and thus could accidentally or maliciously damage your system or invade your privacy. Never run scripts from third parties unless you trust the authors or have carefully audited the scripts yourself.
The Nmap Scripting Engine is described in detail at https://nmap.org/book/nse.html
and is controlled by the following options:
-sC
--script filename|category|directory/|expression[,...]
There are two special features for advanced users only. One is to prefix script names and expressions with + to force them to run even if they normally wouldn't (e.g. the relevant service wasn't detected on the target port). The other is that the argument all may be used to specify every script in Nmap's database. Be cautious with this because NSE contains dangerous scripts such as exploits, brute force authentication crackers, and denial of service attacks.
File and directory names may be relative or absolute. Absolute names are used directly. Relative paths are looked for in the scripts of each of the following places until found:
When a directory name ending in / is given, Nmap loads every file in the directory whose name ends with .nse. All other files are ignored and directories are not searched recursively. When a filename is given, it does not have to have the .nse extension; it will be added automatically if necessary. Nmap scripts are stored in a scripts subdirectory of the Nmap data directory by default (see https://nmap.org/book/data-files.html).
For efficiency, scripts are indexed in a database stored in scripts/script.db, which lists the category or categories in which each script belongs. When referring to scripts from script.db by name, you can use a shell-style ‘*’ wildcard.
nmap --script "http-*"
More complicated script selection can be done using the and, or, and not operators to build Boolean expressions. The operators have the same precedence[11] as in Lua: not is the highest, followed by and and then or. You can alter precedence by using parentheses. Because expressions contain space characters it is necessary to quote them.
nmap --script "not intrusive"
nmap --script "default or safe"
nmap --script "default and safe"
nmap --script "(default or safe or intrusive) and not http-*"
--script-args n1=v1,n2={n3=v3},n4={v4,v5}
--script-args-file filename
--script-help filename|category|directory|expression|all[,...]
--script-trace
--script-updatedb
TIMING AND PERFORMANCE¶
One of my highest Nmap development priorities has always been performance. A default scan (nmap hostname) of a host on my local network takes a fifth of a second. That is barely enough time to blink, but adds up when you are scanning hundreds or thousands of hosts. Moreover, certain scan options such as UDP scanning and version detection can increase scan times substantially. So can certain firewall configurations, particularly response rate limiting. While Nmap utilizes parallelism and many advanced algorithms to accelerate these scans, the user has ultimate control over how Nmap runs. Expert users carefully craft Nmap commands to obtain only the information they care about while meeting their time constraints.
Techniques for improving scan times include omitting non-critical tests, and upgrading to the latest version of Nmap (performance enhancements are made frequently). Optimizing timing parameters can also make a substantial difference. Those options are listed below.
Some options accept a time parameter. This is specified in seconds by default, though you can append ‘ms’, ‘s’, ‘m’, or ‘h’ to the value to specify milliseconds, seconds, minutes, or hours. So the --host-timeout arguments 900000ms, 900, 900s, and 15m all do the same thing.
--min-hostgroup numhosts; --max-hostgroup numhosts (Adjust parallel scan group sizes)
By default, Nmap takes a compromise approach to this conflict. It starts out with a group size as low as five so the first results come quickly and then increases the groupsize to as high as 1024. The exact default numbers depend on the options given. For efficiency reasons, Nmap uses larger group sizes for UDP or few-port TCP scans.
When a maximum group size is specified with --max-hostgroup, Nmap will never exceed that size. Specify a minimum size with --min-hostgroup and Nmap will try to keep group sizes above that level. Nmap may have to use smaller groups than you specify if there are not enough target hosts left on a given interface to fulfill the specified minimum. Both may be set to keep the group size within a specific range, though this is rarely desired.
These options do not have an effect during the host discovery phase of a scan. This includes plain ping scans (-sn). Host discovery always works in large groups of hosts to improve speed and accuracy.
The primary use of these options is to specify a large minimum group size so that the full scan runs more quickly. A common choice is 256 to scan a network in /24 sized chunks. For a scan with many ports, exceeding that number is unlikely to help much. For scans of just a few port numbers, host group sizes of 2048 or more may be helpful.
--min-parallelism numprobes; --max-parallelism numprobes (Adjust probe parallelization)
The most common usage is to set --min-parallelism to a number higher than one to speed up scans of poorly performing hosts or networks. This is a risky option to play with, as setting it too high may affect accuracy. Setting this also reduces Nmap's ability to control parallelism dynamically based on network conditions. A value of 10 might be reasonable, though I only adjust this value as a last resort.
The --max-parallelism option is sometimes set to one to prevent Nmap from sending more than one probe at a time to hosts. The --scan-delay option, discussed later, is another way to do this.
--min-rtt-timeout time, --max-rtt-timeout time, --initial-rtt-timeout time (Adjust probe timeouts)
If the network latency shows itself to be significant and variable, this timeout can grow to several seconds. It also starts at a conservative (high) level and may stay that way for a while when Nmap scans unresponsive hosts.
Specifying a lower --max-rtt-timeout and --initial-rtt-timeout than the defaults can cut scan times significantly. This is particularly true for pingless (-Pn) scans, and those against heavily filtered networks. Don't get too aggressive though. The scan can end up taking longer if you specify such a low value that many probes are timing out and retransmitting while the response is in transit.
If all the hosts are on a local network, 100 milliseconds (--max-rtt-timeout 100ms) is a reasonable aggressive value. If routing is involved, ping a host on the network first with the ICMP ping utility, or with a custom packet crafter such as Nping that is more likely to get through a firewall. Look at the maximum round trip time out of ten packets or so. You might want to double that for the --initial-rtt-timeout and triple or quadruple it for the --max-rtt-timeout. I generally do not set the maximum RTT below 100 ms, no matter what the ping times are. Nor do I exceed 1000 ms.
--min-rtt-timeout is a rarely used option that could be useful when a network is so unreliable that even Nmap's default is too aggressive. Since Nmap only reduces the timeout down to the minimum when the network seems to be reliable, this need is unusual and should be reported as a bug to the nmap-dev mailing list.
--max-retries numtries (Specify the maximum number of port scan probe retransmissions)
The default (with no -T template) is to allow ten retransmissions. If a network seems reliable and the target hosts aren't rate limiting, Nmap usually only does one retransmission. So most target scans aren't even affected by dropping --max-retries to a low value such as three. Such values can substantially speed scans of slow (rate limited) hosts. You usually lose some information when Nmap gives up on ports early, though that may be preferable to letting the --host-timeout expire and losing all information about the target.
--host-timeout time (Give up on slow target hosts)
The special value 0 can be used to mean “no timeout”, which can be used to override the T5 timing template, which sets the host timeout to 15 minutes.
--script-timeout time
The special value 0 can be used to mean “no timeout”, which can be used to override the T5 timing template, which sets the script timeout to 10 minutes.
--scan-delay time; --max-scan-delay time (Adjust delay between probes)
When Nmap adjusts the scan delay upward to cope with rate limiting, the scan slows down dramatically. The --max-scan-delay option specifies the largest delay that Nmap will allow. A low --max-scan-delay can speed up Nmap, but it is risky. Setting this value too low can lead to wasteful packet retransmissions and possible missed ports when the target implements strict rate limiting.
Another use of --scan-delay is to evade threshold based intrusion detection and prevention systems (IDS/IPS).
--min-rate number; --max-rate number (Directly control the scanning rate)
When the --min-rate option is given Nmap will do its best to send packets as fast as or faster than the given rate. The argument is a positive real number representing a packet rate in packets per second. For example, specifying --min-rate 300 means that Nmap will try to keep the sending rate at or above 300 packets per second. Specifying a minimum rate does not keep Nmap from going faster if conditions warrant.
Likewise, --max-rate limits a scan's sending rate to a given maximum. Use --max-rate 100, for example, to limit sending to 100 packets per second on a fast network. Use --max-rate 0.1 for a slow scan of one packet every ten seconds. Use --min-rate and --max-rate together to keep the rate inside a certain range.
These two options are global, affecting an entire scan, not individual hosts. They only affect port scans and host discovery scans. Other features like OS detection implement their own timing.
There are two conditions when the actual scanning rate may fall below the requested minimum. The first is if the minimum is faster than the fastest rate at which Nmap can send, which is dependent on hardware. In this case Nmap will simply send packets as fast as possible, but be aware that such high rates are likely to cause a loss of accuracy. The second case is when Nmap has nothing to send, for example at the end of a scan when the last probes have been sent and Nmap is waiting for them to time out or be responded to. It's normal to see the scanning rate drop at the end of a scan or in between hostgroups. The sending rate may temporarily exceed the maximum to make up for unpredictable delays, but on average the rate will stay at or below the maximum.
Specifying a minimum rate should be done with care. Scanning faster than a network can support may lead to a loss of accuracy. In some cases, using a faster rate can make a scan take longer than it would with a slower rate. This is because Nmap's adaptive retransmission algorithms will detect the network congestion caused by an excessive scanning rate and increase the number of retransmissions in order to improve accuracy. So even though packets are sent at a higher rate, more packets are sent overall. Cap the number of retransmissions with the --max-retries option if you need to set an upper limit on total scan time.
--defeat-rst-ratelimit
Using this option can reduce accuracy, as some ports will appear non-responsive because Nmap didn't wait long enough for a rate-limited RST response. With a SYN scan, the non-response results in the port being labeled filtered rather than the closed state we see when RST packets are received. This option is useful when you only care about open ports, and distinguishing between closed and filtered ports isn't worth the extra time.
--defeat-icmp-ratelimit
--nsock-engine iocp|epoll|kqueue|poll|select
-T paranoid|sneaky|polite|normal|aggressive|insane (Set a timing template)
These templates allow the user to specify how aggressive they wish to be, while leaving Nmap to pick the exact timing values. The templates also make some minor speed adjustments for which fine-grained control options do not currently exist. For example, -T4 prohibits the dynamic scan delay from exceeding 10 ms for TCP ports and -T5 caps that value at 5 ms. Templates can be used in combination with fine-grained controls, and the fine-grained controls that you specify will take precedence over the timing template default for that parameter. I recommend using -T4 when scanning reasonably modern and reliable networks. Keep that option even when you add fine-grained controls so that you benefit from those extra minor optimizations that it enables.
If you are on a decent broadband or ethernet connection, I would recommend always using -T4. Some people love -T5 though it is too aggressive for my taste. People sometimes specify -T2 because they think it is less likely to crash hosts or because they consider themselves to be polite in general. They often don't realize just how slow -T polite really is. Their scan may take ten times longer than a default scan. Machine crashes and bandwidth problems are rare with the default timing options (-T3) and so I normally recommend that for cautious scanners. Omitting version detection is far more effective than playing with timing values at reducing these problems.
While -T0 and -T1 may be useful for avoiding IDS alerts, they will take an extraordinarily long time to scan thousands of machines or ports. For such a long scan, you may prefer to set the exact timing values you need rather than rely on the canned -T0 and -T1 values.
The main effects of T0 are serializing the scan so only one port is scanned at a time, and waiting five minutes between sending each probe. T1 and T2 are similar but they only wait 15 seconds and 0.4 seconds, respectively, between probes. T3 is Nmap's default behavior, which includes parallelization. -T4 does the equivalent of --max-rtt-timeout 1250ms --min-rtt-timeout 100ms --initial-rtt-timeout 500ms --max-retries 6 and sets the maximum TCP and SCTP scan delay to 10ms. T5 does the equivalent of --max-rtt-timeout 300ms --min-rtt-timeout 50ms --initial-rtt-timeout 250ms --max-retries 2 --host-timeout 15m --script-timeout 10m as well as setting the maximum TCP and SCTP scan delay to 5ms. Maximum UDP scan delay is not set by T4 or T5, but it can be set with the --max-scan-delay option.
FIREWALL/IDS EVASION AND SPOOFING¶
Many Internet pioneers envisioned a global open network with a universal IP address space allowing virtual connections between any two nodes. This allows hosts to act as true peers, serving and retrieving information from each other. People could access all of their home systems from work, changing the climate control settings or unlocking the doors for early guests. This vision of universal connectivity has been stifled by address space shortages and security concerns. In the early 1990s, organizations began deploying firewalls for the express purpose of reducing connectivity. Huge networks were cordoned off from the unfiltered Internet by application proxies, network address translation, and packet filters. The unrestricted flow of information gave way to tight regulation of approved communication channels and the content that passes over them.
Network obstructions such as firewalls can make mapping a network exceedingly difficult. It will not get any easier, as stifling casual reconnaissance is often a key goal of implementing the devices. Nevertheless, Nmap offers many features to help understand these complex networks, and to verify that filters are working as intended. It even supports mechanisms for bypassing poorly implemented defenses. One of the best methods of understanding your network security posture is to try to defeat it. Place yourself in the mind-set of an attacker, and deploy techniques from this section against your networks. Launch an FTP bounce scan, idle scan, fragmentation attack, or try to tunnel through one of your own proxies.
In addition to restricting network activity, companies are increasingly monitoring traffic with intrusion detection systems (IDS). All of the major IDSs ship with rules designed to detect Nmap scans because scans are sometimes a precursor to attacks. Many of these products have recently morphed into intrusion prevention systems (IPS) that actively block traffic deemed malicious. Unfortunately for network administrators and IDS vendors, reliably detecting bad intentions by analyzing packet data is a tough problem. Attackers with patience, skill, and the help of certain Nmap options can usually pass by IDSs undetected. Meanwhile, administrators must cope with large numbers of false positive results where innocent activity is misdiagnosed and alerted on or blocked.
Occasionally people suggest that Nmap should not offer features for evading firewall rules or sneaking past IDSs. They argue that these features are just as likely to be misused by attackers as used by administrators to enhance security. The problem with this logic is that these methods would still be used by attackers, who would just find other tools or patch the functionality into Nmap. Meanwhile, administrators would find it that much harder to do their jobs. Deploying only modern, patched FTP servers is a far more powerful defense than trying to prevent the distribution of tools implementing the FTP bounce attack.
There is no magic bullet (or Nmap option) for detecting and subverting firewalls and IDS systems. It takes skill and experience. A tutorial is beyond the scope of this reference guide, which only lists the relevant options and describes what they do.
-f (fragment packets); --mtu (using the specified MTU)
Fragmentation is only supported for Nmap's raw packet features, which includes TCP and UDP port scans (except connect scan and FTP bounce scan) and OS detection. Features such as version detection and the Nmap Scripting Engine generally don't support fragmentation because they rely on your host's TCP stack to communicate with target services.
-D decoy1[,decoy2][,ME][,...] (Cloak a scan with decoys)
Separate each decoy host with commas, and you can optionally use ME as one of the decoys to represent the position for your real IP address. If you put ME in the sixth position or later, some common port scan detectors (such as Solar Designer's excellent Scanlogd) are unlikely to show your IP address at all. If you don't use ME, Nmap will put you in a random position. You can also use RND to generate a random, non-reserved IP address, or RND:number to generate number addresses.
Note that the hosts you use as decoys should be up or you might accidentally SYN flood your targets. Also it will be pretty easy to determine which host is scanning if only one is actually up on the network. You might want to use IP addresses instead of names (so the decoy networks don't see you in their nameserver logs). Right now random IP address generation is only supported with IPv4
Decoys are used both in the initial host discovery scan (using ICMP, SYN, ACK, or whatever) and during the actual port scanning phase. Decoys are also used during remote OS detection (-O). Decoys do not work with version detection or TCP connect scan. When a scan delay is in effect, the delay is enforced between each batch of spoofed probes, not between each individual probe. Because decoys are sent as a batch all at once, they may temporarily violate congestion control limits.
It is worth noting that using too many decoys may slow your scan and potentially even make it less accurate. Also, some ISPs will filter out your spoofed packets, but many do not restrict spoofed IP packets at all.
-S IP_Address (Spoof source address)
Another possible use of this flag is to spoof the scan to make the targets think that someone else is scanning them. Imagine a company being repeatedly port scanned by a competitor! The -e option and -Pn are generally required for this sort of usage. Note that you usually won't receive reply packets back (they will be addressed to the IP you are spoofing), so Nmap won't produce useful reports.
-e interface (Use specified interface)
--source-port portnumber; -g portnumber (Spoof source port number)
Secure solutions to these problems exist, often in the form of application-level proxies or protocol-parsing firewall modules. Unfortunately there are also easier, insecure solutions. Noting that DNS replies come from port 53 and active FTP from port 20, many administrators have fallen into the trap of simply allowing incoming traffic from those ports. They often assume that no attacker would notice and exploit such firewall holes. In other cases, administrators consider this a short-term stop-gap measure until they can implement a more secure solution. Then they forget the security upgrade.
Overworked network administrators are not the only ones to fall into this trap. Numerous products have shipped with these insecure rules. Even Microsoft has been guilty. The IPsec filters that shipped with Windows 2000 and Windows XP contain an implicit rule that allows all TCP or UDP traffic from port 88 (Kerberos). In another well-known case, versions of the Zone Alarm personal firewall up to 2.1.25 allowed any incoming UDP packets with the source port 53 (DNS) or 67 (DHCP).
Nmap offers the -g and --source-port options (they are equivalent) to exploit these weaknesses. Simply provide a port number and Nmap will send packets from that port where possible. Most scanning operations that use raw sockets, including SYN and UDP scans, support the option completely. The option notably doesn't have an effect for any operations that use normal operating system sockets, including DNS requests, TCP connect scan, version detection, and script scanning. Setting the source port also doesn't work for OS detection, because Nmap must use different port numbers for certain OS detection tests to work properly.
--data hex string (Append custom binary data to sent packets)
--data-string string (Append custom string to sent packets)
--data-length number (Append random data to sent packets)
--ip-options R|S [route]|L [route]|T|U ... ; --ip-options hex string (Send packets with specified ip options)
The most powerful way to specify IP options is to simply pass in values as the argument to --ip-options. Precede each hex number with \x then the two digits. You may repeat certain characters by following them with an asterisk and then the number of times you wish them to repeat. For example, \x01\x07\x04\x00*36\x01 is a hex string containing 36 NUL bytes.
Nmap also offers a shortcut mechanism for specifying options. Simply pass the letter R, T, or U to request record-route, record-timestamp, or both options together, respectively. Loose or strict source routing may be specified with an L or S followed by a space and then a space-separated list of IP addresses.
If you wish to see the options in packets sent and received, specify --packet-trace. For more information and examples of using IP options with Nmap, see https://seclists.org/nmap-dev/2006/q3/52.
--ttl value (Set IP time-to-live field)
--randomize-hosts (Randomize target host order)
--spoof-mac MAC address, prefix, or vendor name (Spoof MAC address)
for all of the raw ethernet frames it sends. This option implies --send-eth to ensure that Nmap actually sends ethernet-level packets. The MAC given can take several formats. If it is simply the number 0, Nmap chooses a completely random MAC address for the session. If the given string is an even number of hex digits (with the pairs optionally separated by a colon), Nmap will use those as the MAC. If fewer than 12 hex digits are provided, Nmap fills in the remainder of the six bytes with random values. If the argument isn't a zero or hex string, Nmap looks through nmap-mac-prefixes to find a vendor name containing the given string (it is case insensitive). If a match is found, Nmap uses the vendor's OUI (three-byte prefix) and fills out the remaining three bytes randomly. Valid --spoof-mac argument examples are Apple, 0, 01:02:03:04:05:06, deadbeefcafe, 0020F2, and Cisco. This option only affects raw packet scans such as SYN scan or OS detection, not connection-oriented features such as version detection or the Nmap Scripting Engine.
--proxies Comma-separated list of proxy URLs (Relay TCP connections through a chain of proxies)
This option takes a list of proxies as argument, expressed as URLs in the format proto://host:port. Use commas to separate node URLs in a chain. No authentication is supported yet. Valid protocols are HTTP and SOCKS4.
Warning: this feature is still under development and has limitations. It is implemented within the nsock library and thus has no effect on the ping, port scanning and OS discovery phases of a scan. Only NSE and version scan benefit from this option so far—other features may disclose your true address. SSL connections are not yet supported, nor is proxy-side DNS resolution (hostnames are always resolved by Nmap).
--badsum (Send packets with bogus TCP/UDP checksums)
--adler32 (Use deprecated Adler32 instead of CRC32C for SCTP checksums)
OUTPUT¶
Any security tool is only as useful as the output it generates. Complex tests and algorithms are of little value if they aren't presented in an organized and comprehensible fashion. Given the number of ways Nmap is used by people and other software, no single format can please everyone. So Nmap offers several formats, including the interactive mode for humans to read directly and XML for easy parsing by software.
In addition to offering different output formats, Nmap provides options for controlling the verbosity of output as well as debugging messages. Output types may be sent to standard output or to named files, which Nmap can append to or clobber. Output files may also be used to resume aborted scans.
Nmap makes output available in five different formats. The default is called interactive output, and it is sent to standard output (stdout). There is also normal output, which is similar to interactive except that it displays less runtime information and warnings since it is expected to be analyzed after the scan completes rather than interactively.
XML output is one of the most important output types, as it can be converted to HTML, easily parsed by programs such as Nmap graphical user interfaces, or imported into databases.
The two remaining output types are the simple grepable output which includes most information for a target host on a single line, and sCRiPt KiDDi3 0utPUt for users who consider themselves |<-r4d.
While interactive output is the default and has no associated command-line options, the other four format options use the same syntax. They take one argument, which is the filename that results should be stored in. Multiple formats may be specified, but each format may only be specified once. For example, you may wish to save normal output for your own review while saving XML of the same scan for programmatic analysis. You might do this with the options -oX myscan.xml -oN myscan.nmap. While this chapter uses the simple names like myscan.xml for brevity, more descriptive names are generally recommended. The names chosen are a matter of personal preference, though I use long ones that incorporate the scan date and a word or two describing the scan, placed in a directory named after the company I'm scanning.
While these options save results to files, Nmap still prints interactive output to stdout as usual. For example, the command nmap -oX myscan.xml target prints XML to myscan.xml and fills standard output with the same interactive results it would have printed if -oX wasn't specified at all. You can change this by passing a hyphen character as the argument to one of the format types. This causes Nmap to deactivate interactive output, and instead print results in the format you specified to the standard output stream. So the command nmap -oX - target will send only XML output to stdout. Serious errors may still be printed to the normal error stream, stderr.
Unlike some Nmap arguments, the space between the logfile option flag (such as -oX) and the filename or hyphen is mandatory. If you omit the flags and give arguments such as -oG- or -oXscan.xml, a backwards compatibility feature of Nmap will cause the creation of normal format output files named G- and Xscan.xml respectively.
All of these arguments support strftime-like conversions in the filename. %H, %M, %S, %m, %d, %y, and %Y are all exactly the same as in strftime. %T is the same as %H%M%S, %R is the same as %H%M, and %D is the same as %m%d%y. A % followed by any other character just yields that character (%% gives you a percent symbol). So -oX 'scan-%T-%D.xml' will use an XML file with a name in the form of scan-144840-121307.xml.
Nmap also offers options to control scan verbosity and to append to output files rather than clobbering them. All of these options are described below.
Nmap Output Formats
-oN filespec (normal output)
-oX filespec (XML output)
XML offers a stable format that is easily parsed by software. Free XML parsers are available for all major computer languages, including C/C++, Perl, Python, and Java. People have even written bindings for most of these languages to handle Nmap output and execution specifically. Examples are Nmap::Scanner[14] and Nmap::Parser[15] in Perl CPAN. In almost all cases that a non-trivial application interfaces with Nmap, XML is the preferred format.
The XML output references an XSL stylesheet which can be used to format the results as HTML. The easiest way to use this is simply to load the XML output in a web browser such as Firefox or IE. By default, this will only work on the machine you ran Nmap on (or a similarly configured one) due to the hard-coded nmap.xsl filesystem path. Use the --webxml or --stylesheet options to create portable XML files that render as HTML on any web-connected machine.
-oS filespec (ScRipT KIdd|3 oUTpuT)
-oG filespec (grepable output)
Nevertheless, grepable output is still quite popular. It is a simple format that lists each host on one line and can be trivially searched and parsed with standard Unix tools such as grep, awk, cut, sed, diff, and Perl. Even I usually use it for one-off tests done at the command line. Finding all the hosts with the SSH port open or that are running Solaris takes only a simple grep to identify the hosts, piped to an awk or cut command to print the desired fields.
Grepable output consists of comments (lines starting with a pound (#)) and target lines. A target line includes a combination of six labeled fields, separated by tabs and followed with a colon. The fields are Host, Ports, Protocols, Ignored State, OS, Seq Index, IP ID, and Status.
The most important of these fields is generally Ports, which gives details on each interesting port. It is a comma separated list of port entries. Each port entry represents one interesting port, and takes the form of seven slash (/) separated subfields. Those subfields are: Port number, State, Protocol, Owner, Service, SunRPC info, and Version info.
As with XML output, this man page does not allow for documenting the entire format. A more detailed look at the Nmap grepable output format is available from https://nmap.org/book/output-formats-grepable-output.html.
-oA basename (Output to all formats)
Verbosity and debugging options
-v (Increase verbosity level), -vlevel (Set verbosity level)
Most changes only affect interactive output, and some also affect normal and script kiddie output. The other output types are meant to be processed by machines, so Nmap can give substantial detail by default in those formats without fatiguing a human user. However, there are a few changes in other modes where output size can be reduced substantially by omitting some detail. For example, a comment line in the grepable output that provides a list of all ports scanned is only printed in verbose mode because it can be quite long.
-d (Increase debugging level), -dlevel (Set debugging level)
Debugging output is useful when a bug is suspected in Nmap, or if you are simply confused as to what Nmap is doing and why. As this feature is mostly intended for developers, debug lines aren't always self-explanatory. You may get something like: Timeout vals: srtt: -1 rttvar: -1 to: 1000000 delta 14987 ==> srtt: 14987 rttvar: 14987 to: 100000. If you don't understand a line, your only recourses are to ignore it, look it up in the source code, or request help from the development list (nmap-dev). Some lines are self explanatory, but the messages become more obscure as the debug level is increased.
--reason (Host and port state reasons)
--stats-every time (Print periodic timing stats)
--packet-trace (Trace packets and data sent and received)
--open (Show only open (or possibly open) ports)
Beginning with Nmap 7.40, the --open option implies
--defeat-rst-ratelimit, because that option only affects closed and filtered ports, which are hidden by --open.
--iflist (List interfaces and routes)
Miscellaneous output options
--append-output (Append to rather than clobber output files)
--resume filename (Resume aborted scan)
--noninteractive (Disable runtime interactions)
--stylesheet path or URL (Set XSL stylesheet to transform XML output)
--webxml (Load stylesheet from Nmap.Org)
--no-stylesheet (Omit XSL stylesheet declaration from XML)
MISCELLANEOUS OPTIONS¶
This section describes some important (and not-so-important) options that don't really fit anywhere else.
-6 (Enable IPv6 scanning)
While IPv6 hasn't exactly taken the world by storm, it gets significant use in some (usually Asian) countries and most modern operating systems support it. To use Nmap with IPv6, both the source and target of your scan must be configured for IPv6. If your ISP (like most of them) does not allocate IPv6 addresses to you, free tunnel brokers are widely available and work fine with Nmap. I use the free IPv6 tunnel broker service at http://www.tunnelbroker.net. Other tunnel brokers are listed at Wikipedia[17]. 6to4 tunnels are another popular, free approach.
On Windows, raw-socket IPv6 scans are supported only on ethernet devices (not tunnels), and only on Windows Vista and later. Use the --unprivileged option in other situations.
-A (Aggressive scan options)
--datadir directoryname (Specify custom Nmap data file location)
--servicedb services file (Specify custom services file)
--versiondb service probes file (Specify custom service probes file)
--send-eth (Use raw ethernet sending)
--send-ip (Send at raw IP level)
--privileged (Assume that the user is fully privileged)
--unprivileged (Assume that the user lacks raw socket privileges)
--release-memory (Release memory before quitting)
-V; --version (Print version number)
-h; --help (Print help summary page)
RUNTIME INTERACTION¶
During the execution of Nmap, all key presses are captured. This allows you to interact with the program without aborting and restarting it. Certain special keys will change options, while any other keys will print out a status message telling you about the scan. The convention is that lowercase letters increase the amount of printing, and uppercase letters decrease the printing. You may also press ‘?’ for help.
v / V
d / D
p / P
?
Anything else
Stats: 0:00:07 elapsed; 20 hosts completed (1 up), 1 undergoing Service Scan Service scan Timing: About 33.33% done; ETC: 20:57 (0:00:12 remaining)
EXAMPLES¶
Here are some Nmap usage examples, from the simple and routine to a little more complex and esoteric. Some actual IP addresses and domain names are used to make things more concrete. In their place you should substitute addresses/names from your own network. While I don't think port scanning other networks is or should be illegal, some network administrators don't appreciate unsolicited scanning of their networks and may complain. Getting permission first is the best approach.
For testing purposes, you have permission to scan the host scanme.nmap.org. This permission only includes scanning via Nmap and not testing exploits or denial of service attacks. To conserve bandwidth, please do not initiate more than a dozen scans against that host per day. If this free scanning target service is abused, it will be taken down and Nmap will report Failed to resolve given hostname/IP: scanme.nmap.org. These permissions also apply to the hosts scanme2.nmap.org, scanme3.nmap.org, and so on, though those hosts do not currently exist.
nmap -v scanme.nmap.org
This option scans all reserved TCP ports on the machine scanme.nmap.org . The -v option enables verbose mode.
nmap -sS -O scanme.nmap.org/24
Launches a stealth SYN scan against each machine that is up out of the 256 IPs on the /24 sized network where Scanme resides. It also tries to determine what operating system is running on each host that is up and running. This requires root privileges because of the SYN scan and OS detection.
nmap -sV -p 22,53,110,143,4564 198.116.0-255.1-127
Launches host enumeration and a TCP scan at the first half of each of the 255 possible eight-bit subnets in the 198.116.0.0/16 address space. This tests whether the systems run SSH, DNS, POP3, or IMAP on their standard ports, or anything on port 4564. For any of these ports found open, version detection is used to determine what application is running.
nmap -v -iR 100000 -Pn -p 80
Asks Nmap to choose 100,000 hosts at random and scan them for web servers (port 80). Host enumeration is disabled with -Pn since first sending a couple probes to determine whether a host is up is wasteful when you are only probing one port on each target host anyway.
nmap -Pn -p80 -oX logs/pb-port80scan.xml -oG logs/pb-port80scan.gnmap 216.163.128.20/20
This scans 4096 IPs for any web servers (without pinging them) and saves the output in grepable and XML formats.
NMAP BOOK¶
While this reference guide details all material Nmap options, it can't fully demonstrate how to apply those features to quickly solve real-world tasks. For that, we released Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning. Topics include subverting firewalls and intrusion detection systems, optimizing Nmap performance, and automating common networking tasks with the Nmap Scripting Engine. Hints and instructions are provided for common Nmap tasks such as taking network inventory, penetration testing, detecting rogue wireless access points, and quashing network worm outbreaks. Examples and diagrams show actual communication on the wire. More than half of the book is available free online. See https://nmap.org/book for more information.
BUGS¶
Like its author, Nmap isn't perfect. But you can help make it better by sending bug reports or even writing patches. If Nmap doesn't behave the way you expect, first upgrade to the latest version available from https://nmap.org. If the problem persists, do some research to determine whether it has already been discovered and addressed. Try searching for the problem or error message on Google since that aggregates so many forums. If nothing comes of this, create an Issue on our tracker (http://issues.nmap.org) and/or mail a bug report to <dev@nmap.org>. If you subscribe to the nmap-dev list before posting, your message will bypass moderation and get through more quickly. Subscribe at https://nmap.org/mailman/listinfo/dev. Please include everything you have learned about the problem, as well as what version of Nmap you are using and what operating system version it is running on. Other suggestions for improving Nmap may be sent to the Nmap dev mailing list as well.
If you are able to write a patch improving Nmap or fixing a bug, that is even better! Instructions for submitting patches or git pull requests are available from https://github.com/nmap/nmap/blob/master/CONTRIBUTING.md
Particularly sensitive issues such as a security reports may be sent directly to Nmap's author Fyodor directly at <fyodor@nmap.org>. All other reports and comments should use the dev list or issue tracker instead because more people read, follow, and respond to those.
AUTHORS¶
Gordon “Fyodor” Lyon <fyodor@nmap.org> wrote and released Nmap in 1997. Since then, hundreds of people have made valuable contributions, as detailed in the CHANGELOG file distributed with Nmap and also available from https://nmap.org/changelog.html. David Fifield and Daniel Miller deserve special recognition for their enormous multi-year contributions!
LEGAL NOTICES¶
Nmap Copyright and Licensing¶
The Nmap Security Scanner is (C) 1996–2022 Nmap Software LLC ("The Nmap Project"). Nmap is also a registered trademark of the Nmap Project. It is published under the Nmap Public Source License[18]. This generally allows end users to download and use Nmap for free. It doesn't allow Nmap to be used and redistributed within commercial software or hardware products (including appliances, virtual machines, and traditional applications). We fund the project by selling a special Nmap OEM Edition for this purpose, as described at https://nmap.org/oem. Hundreds of large and small software vendors have already purchased OEM licenses to embed Nmap technology such as host discovery, port scanning, OS detection, version detection, and the Nmap Scripting Engine within their products.
The Nmap Project has permission to redistribute Npcap, a packet capturing driver and library for the Microsoft Windows platform. Npcap is a separate work with it's own license rather than this Nmap license. Since the Npcap license does not permit redistribution without special permission, our Nmap Windows binary packages which contain Npcap may not be redistributed without special permission.
Even though the NPSL is based on GPLv2, it contains different provisions and is not directly compatible. It is incompatible with some other open source licenses as well. In some cases we can relicense portions of Nmap or grant special permissions to use it in other open source software. Please contact fyodor@nmap.org with any such requests. Similarly, we don't incorporate incompatible open source software into Nmap without special permission from the copyright holders.
If you have received a written license agreement or contract for Nmap (such as an Nmap OEM license[19]) stating terms other than these, you may choose to use and redistribute Nmap under those terms instead.
Creative Commons License for this Nmap Guide¶
This Nmap Reference Guide is (C) 2005–2022 Nmap Software LLC. It is hereby placed under version 3.0 of the Creative Commons Attribution License[20]. This allows you redistribute and modify the work as you desire, as long as you credit the original source. Alternatively, you may choose to treat this document as falling under the same license as Nmap itself (discussed previously).
Source Code Availability and Community Contributions¶
Source is provided to this software because we believe users have a right to know exactly what a program is going to do before they run it. This also allows you to audit the software for security holes.
Source code also allows you to port Nmap to new platforms, fix bugs, and add new features. You are highly encouraged to submit your changes as Github Pull Requests (PR) or send them to <dev@nmap.org> for possible incorporation into the main distribution. By submitting such changes, it is assumed that you are offering the Nmap Project the unlimited, non-exclusive right to reuse, modify, and relicense the code. This is important because the inability to relicense code has caused devastating problems for other Free Software projects (such as KDE and NASM). We also sell commercial licenses to Nmap OEM[21]. If you wish to specify special license conditions of your contributions, just say so when you send them.
No Warranty¶
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
It should also be noted that Nmap has occasionally been known to crash poorly written applications, TCP/IP stacks, and even operating systems. While this is extremely rare, it is important to keep in mind. Nmap should never be run against mission critical systems unless you are prepared to suffer downtime. We acknowledge here that Nmap may crash your systems or networks and we disclaim all liability for any damage or problems Nmap could cause.
Inappropriate Usage¶
Because of the slight risk of crashes and because a few black hats like to use Nmap for reconnaissance prior to attacking systems, there are administrators who become upset and may complain when their system is scanned. Thus, it is often advisable to request permission before doing even a light scan of a network.
Nmap should never be installed with special privileges (e.g. suid root). That would open up a major security vulnerability as other users on the system (or attackers) could use it for privilege escalation.
Nmap is not designed, manufactured, or intended for use in hazardous environments requiring fail- safe performance where the failure of the software could lead directly to death, personal injury, or significant physical or environmental damage.
Third-Party Software and Funding Notices¶
This product includes software developed by the Apache Software Foundation[22]. A modified version of the Libpcap portable packet capture library[23] is distributed along with Nmap. The Windows version of Nmap utilizes the Libpcap-derived Ncap library[24] instead. Regular expression support is provided by the PCRE library[25], which is open-source software, written by Philip Hazel. Certain raw networking functions use the Libdnet[26] networking library, which was written by Dug Song. A modified version is distributed with Nmap. Nmap can optionally link with the OpenSSL cryptography toolkit[27] for SSL version detection support. The Nmap Scripting Engine uses an embedded version of the Lua programming language[10]. The Liblinear linear classification library[28] is used for our IPv6 OS detection machine learning techniques[29].
All of the third-party software described in this paragraph is freely redistributable under BSD-style software licenses.
Binary packages for Windows and Mac OS X include support libraries necessary to run Zenmap and Ndiff with Python and PyGTK. (Unix platforms commonly make these libraries easy to install, so they are not part of the packages.) A listing of these support libraries and their licenses is included in the LICENSES files.
This software was supported in part through the Google Summer of Code[30] and the DARPA CINDER program[31] (DARPA-BAA-10-84).
United States Export Control¶
Nmap only uses encryption when compiled with the optional OpenSSL support and linked with OpenSSL. When compiled without OpenSSL support, the Nmap Project believes that Nmap is not subject to U.S. Export Administration Regulations (EAR)[32] export control. As such, there is no applicable ECCN (export control classification number) and exportation does not require any special license, permit, or other governmental authorization.
When compiled with OpenSSL support or distributed as source code, the Nmap Project believes that Nmap falls under U.S. ECCN 5D002[33] (“Information Security Software”). We distribute Nmap under the TSU exception for publicly available encryption software defined in EAR 740.13(e)[34].
NOTES¶
- 1.
- Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning
- 2.
- RFC 1122
- 3.
- RFC 792
- 4.
- RFC 950
- 5.
- UDP
- 6.
- SCTP
- 7.
- TCP RFC
- 8.
- RFC 959
- 9.
- RFC 1323
- 10.
- Lua programming language
- 11.
- precedence
- 12.
- IP protocol
- 13.
- RFC 2960
- 14.
- Nmap::Scanner
- 15.
- Nmap::Parser
- 16.
- xsltproc
- 17.
- listed at Wikipedia
- 18.
- Nmap Public Source License
- 19.
- Nmap OEM license
- 20.
- Creative Commons Attribution License
- 21.
- Nmap OEM
- 22.
- Apache Software Foundation
- 23.
- Libpcap portable packet capture library
- 24.
- Ncap library
- 25.
- PCRE library
- 26.
- Libdnet
- 27.
- OpenSSL cryptography toolkit
- 28.
- Liblinear linear classification library
- 29.
- IPv6 OS detection machine learning techniques
- 30.
- Google Summer of Code
- 31.
- DARPA CINDER program
- 32.
- Export Administration Regulations (EAR)
- 33.
- 5D002
- 34.
- EAR 740.13(e)
05/17/2023 | Nmap |